ROBOTS FOR RECYCLING

The first weeks of AMP Robotics

Matanya Horowitz, James Bailey, Andrew Adare (Team AMP)

Boulder is for Robots Meetup April 15, 2015

C&D MATERIAL RECOVERY

A massive-scale problem

250 million tons created / year (vs. 500 million tons municipal waste)

95% is recyclableToday, only 30% is recycled

A 160 million ton/year opportunity...in a \$4B/yr market

RECYCLING PICKLINES TODAY

The current paradigm for construction and demolition (C&D) debris

Hazardous:

- Lead-based paint, asbestos, particulates, sharps
- In a work population of 16,000, 3,000 injury/illness reports/year

Employee retention often a problem.

Cost/benefit:

- Wages + liability insurance dominate recycling costs
- Existing automation equipment must be financed (bonds)
 - \rightarrow final cost often 4x upfront price

For these reasons, most C&D material is landfilled.

ROBOTS FOR RECYCLING?

- A good **automated solution** would make C&D recycling cost-effective.
- Requires solving these problems:
 - Object detection
 - Multi-tracking
 - Classifying debris
 - Path planning
 - Fast sorting

Must be done **safely** in real time, in a dirty environment, inexpensively.

This is a brief story of our 14-week-old startup and our progress toward these goals.

TEAM AMP

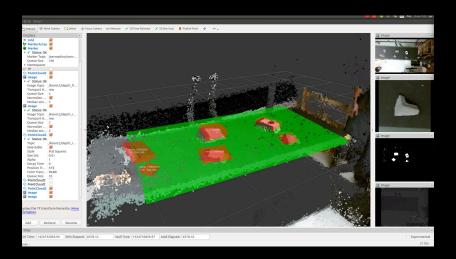
AMP ROBOTICS

The current team

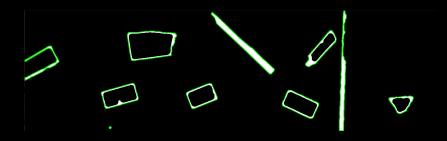
Matanya Horowitz (founder) Envisioned this startup as a PhD student

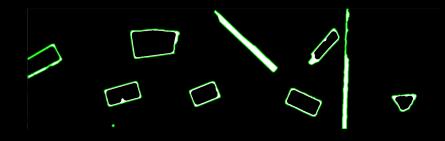
James Bailey (co-founder) Former Googler, left in search of adventure

Andrew Adare (co-founder) Defected from academia (nuclear physics)



Microsoft Kinect v2 for XBox One


Segmentation using depth imaging


 $\textbf{Color image} \rightarrow \textbf{edge detection} \rightarrow \textbf{contours} \rightarrow \textbf{convex polygon}$

 $\textbf{Color image} \rightarrow \textbf{edge detection} \rightarrow \textbf{contours} \rightarrow \textbf{convex polygon}$

 $\textbf{Color image} \rightarrow \textbf{edge detection} \rightarrow \textbf{contours} \rightarrow \textbf{convex polygon}$

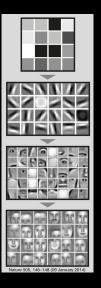
Ongoing work:

segmentation against a nonuniform background (piled debris)

TRACKING

Multiple objects, noisy position measurements

Animation requires Adobe Acrobat PDF reader


TRACKING

Multiple objects, noisy position measurements

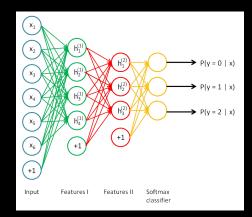

Animation requires Adobe Acrobat PDF reader

IMAGE CLASSIFICATION

using deep neural networks

- Given good data, classification is easy
- But learning distinctive features is hard
- Huge advances in the past 5 years

An example with handwritten digits

Show the network images of digits 5-9, but don't tell it what they are

https://github.com/andrewadare/ufldl-tutorial.git

An example with handwritten digits

Show the network images of digits 5-9, but don't tell it what they are

Network learns penstroke-like features

Features from digits 5-9

https://github.com/andrewadare/ufldl-tutorial.git

An example with handwritten digits

- Show the network images of digits 5-9, but don't tell it what they are
- Network learns penstroke-like features
- After a quick classifier training phase, digits 0-4 are recognized with >98% accuracy

https://github.com/andrewadare/ufldl-tutorial.git

An example with handwritten digits

Show the network images of digits 5-9, but don't tell it what they are

Network learns penstroke-like features

After a quick classifier training phase, digits 0-4 are recognized with >98% accuracy

https://github.com/andrewadare/ufldl-tutorial.git

We do similar things with brick, wood, concrete, etc.

Classification demo video:

https://drive.google.com/file/d/0BzdQPul25VBJcnd4a3dMeldBZHM/view?usp=sharing

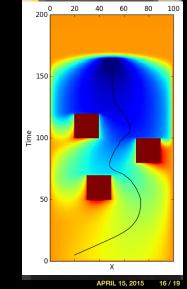
PATH PLANNING

Making the most out of simple hardware

- Selective conveyor sorting possible with a 1D passive gantry pusher.
- Weave through obstacles by solving a 2D boundary problem:

$$0 = -\frac{1}{\lambda}q\Psi + f^{T}(\nabla_{x}\Psi) + \frac{1}{2}Tr\left(\left(\nabla_{xx}\Psi\right)\Sigma_{t}\right)$$

No if statements! Real-time solution \rightarrow optimal path in 20 ms M. Horowitz et al, IROS 2014 224-231 / arXiv:1409.5993

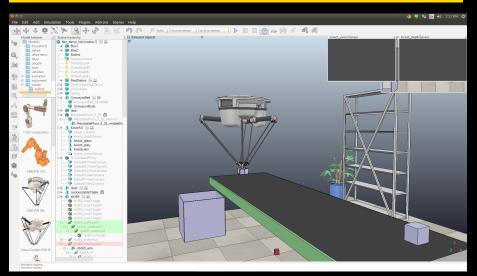

PATH PLANNING

Making the most out of simple hardware

- Selective conveyor sorting possible with a 1D passive gantry pusher.
- Weave through obstacles by solving a 2D boundary problem:

$$0 = -\frac{1}{\lambda}q\Psi + f^{T}(\nabla_{x}\Psi) + \frac{1}{2}Tr\left(\left(\nabla_{xx}\Psi\right)\Sigma_{t}\right)$$

No if statements! Real-time solution \rightarrow optimal path in 20 ms M. Horowitz et al, IROS 2014 224-231 / arXiv:1409.5993



Pusher prototype video:

https://drive.google.com/file/d/0BzdQPul25VBJUkZoQ3laWXE2VjA/view?usp=sharing

WHERE WE ARE HEADED

Fast Delta Manipulators

Simulations already underway, acquisition by summer 2015

TEAM AMP

SUMMARY

Automated recycling: many interesting problems to work on

- Just getting started, but very optimistic
- Our tech generalizes—enthusiastic about new applications

p.s. We are hiring!

www.amprobotics.com

 \bowtie

matanya@amprobotics.com

james@amprobotics.com

andrew@amprobotics.com