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C&D MATERIAL RECOVERY
A massive-scale problem

250 million tons created / year
(vs. 500 million tons municipal waste)

95% is recyclable
Today, only 30% is recycled

A 160
million
ton/year
opportunity…in
a
$4B/yr
market
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RECYCLING PICKLINES TODAY
The current paradigm for construction and demolition (C&D) debris

Hazardous:
Lead-based paint, asbestos,
particulates, sharps
In a work population of 16,000,
3,000 injury/illness reports/year

Employee retention often a problem.

Cost/benefit:
Wages + liability insurance
dominate recycling costs
Existing automation equipment
must be financed (bonds)
→ final cost often 4x upfront price

For
these
reasons, most
C&D material
is
landfilled.
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ROBOTS FOR RECYCLING?

A good automated
solution would make
C&D recycling cost-effective.

Requires
solving
these
problems:
Object detection
Multi-tracking
Classifying debris
Path planning
Fast sorting

Must be done safely in real time, in a dirty
environment, inexpensively.

This is a brief story of our 14-week-old startup
and our progress toward these goals.
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AMP ROBOTICS
The current team

Matanya
Horowitz (founder)
Envisioned this startup as a PhD student

James
Bailey (co-founder)
Former Googler, left in search of adventure

Andrew
Adare (co-founder)
Defected from academia (nuclear physics)
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OBJECT PERCEPTION
Microsoft Kinect v2 for XBox One
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OBJECT PERCEPTION
Segmentation using depth imaging
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OBJECT PERCEPTION
Color image→ edge detection→ contours→ convex polygon

Ongoing
work:
segmentation against a nonuniform background (piled debris)
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TRACKING
Multiple objects, noisy position measurements

Animation requires Adobe Acrobat PDF reader
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IMAGE CLASSIFICATION
using deep neural networks

Given good data, classification is easy
But learning distinctive features is hard
Huge advances in the past 5 years
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SELF-TAUGHT LEARNING
An example with handwritten digits

Show the network images of digits
5-9, but don’t tell it what they are

Network learns penstroke-like features

After a quick classifier training phase,
digits 0-4 are recognized with >98%
accuracy

https://github.com/andrewadare/ufldl-tutorial.git

We
do
similar
things
with
brick, wood, concrete, etc.
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Classification demo video:

https://drive.google.com/file/d/0BzdQPul25VBJcnd4a3dMeldBZHM/view?usp=sharing



PATH PLANNING
Making the most out of simple hardware

Selective conveyor sorting possible with a 1D
passive gantry pusher.

Weave through obstacles by solving a 2D
boundary problem:

in the controls in order to simplify the HJB equation in
a future step of the analysis. The goal is to minimize the
following expected cost functional

J(x0:T , u0:T ) = E

�(x

T

) +

Z
T

0
r(x

t

, u

t

)dt

�
(3)

where � represents a state-dependent terminal cost, T is the
final time of the trajectory, E[·] is the expectation operators,
and the symbols x0:T and u0:T denote the state and control
over the interval [0, T ].

We consider the first-exit problem, wherein the state of the
system exists in a compact domain ⌦. The system continues
to operate, and accrue cost, until it reaches the boundary,
@⌦, of the domain at time T whereupon the terminal cost
�(x(T )) is accrued. In the navigation problem, this boundary
consists of goals and obstacles in the robot workspace.

A common construction in the optimization literature is
the value function, V (x

t

), which captures the “cost-to-go”
from a given state. The optimal action follows the gradient
of the value function, bringing the agent into the states with
lower cost over the remaining time horizon. The solution to
the optimization problem is, beginning from an initial point
x
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Using a dynamic programming argument it is possible to
derive the Hamilton-Jacobi-Bellman (HJB) equation associ-
ated with this problem [7], which is found to be
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T and the dependency on state is suppressed
for brevity. Since the control effort enters quadratically into
the cost, the optimal control takes the form:
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Substituting the optimal u into (5) yields the following
nonlinear, second order PDE in the cost-to-go V (·):
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The difficulty of solving this nonlinear, second order PDE
often prevents practitioners of optimal control from attempt-
ing to solve for the value function directly. However, it has
recently been found [13], [30], [26] that with the assumption
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and the logarithmic transformation

V = �� log (7)

one can obtain, after substitution and simplification, the
following linear PDE
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This transformation of the value function, which we call
here the desirability, provides an additional, computationally
appealing, method through which to calculate the value
function. The solution to the desirability may readily be
transformed by (7) to obtain the value function, which may
then be used for execution. Note that condition (6) can
roughly be interpreted as a controllability-type condition: the
system must have sufficient control to span (or counterbal-
ance) the effects of input noise on the system dynamics.
Furthermore, it must be “cheap” for the system to push in
directions where noise is high, and expensive were noise is
low. Additional discussion may be found in [30].

Note that Eq. (8) is in particular an elliptic PDE, and
therefore obeys the maximum principle for elliptic PDEs [6].
This implies that there exist no local minima or maxima in
the interior ⌦ of these HJB solutions, satisfying the Morse
property of navigation functions in Definition 1.

IV. NAVIGATION FUNCTIONS THROUGH OPTIMAL
CONTROL

This section will first reduce the SOC problem introduced
above to the standard setting of navigation functions by
sequentially incorporating the assumptions which hold in
the classical navigation function setting. These successive
eliminations of terms will then illuminate some connections
between our approach and classical navigation function
approaches. Finally, we will suggest how an approximate
minimum time problem can be formulated in this approach.

A. Reduction to the Navigation Function

Dynamics. Since the classical navigation function ap-
proach implicitly decouples the trajectory generation prob-
lem from the trajectory following control design, the dynam-
ics of a specific system are ignored. Hence, in our parallel
development of the Navigation HJB equation, the dynamic
term may be dropped f := 0. This results in the Navigation
PDE:
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Similarly, the classical navigation function setting does not
consider spatially dependent costs. Thus, the state-dependent
term in the cost function, q(x), may be simplified to a free
scalar parameter q := ↵, producing the PDE
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We will term this PDE as the Augmented Navigation PDE,
as it incorporates additional cost information as compared
to traditional navigation functions, but does not include the
effects of system dynamics. The effect is that those states
that appear only in the dynamics, and are not the workspace
states, may be neglected as well. In reverse, if one wishes
to include dynamics, their presence in f(x) will require the
additional of these states as dimensions in the HJB PDE.

Interestingly, this PDE is well known as the homogeneous
Screened Poisson Equation, and has found applications in
image processing [2]. Of interest here are the observations

No if statements!
Real-time solution → optimal path in 20 ms
M. Horowitz et al, IROS 2014 224-231 / arXiv:1409.5993
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Pusher prototype video:

https://drive.google.com/file/d/0BzdQPul25VBJUkZoQ3laWXE2VjA/view?usp=sharing



WHERE WE ARE HEADED
Fast Delta Manipulators

Simulations already underway, acquisition by summer 2015
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SUMMARY

Automated recycling: many interesting problems to work on
Just getting started, but very optimistic
Our tech generalizes—enthusiastic about new applications

p.s. We
are
hiring!

www.amprobotics.com

B:
matanya@amprobotics.com

james@amprobotics.com

andrew@amprobotics.com
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