Highlights from ALICE Pb-Pb results

Andrew Adare

for the

US LHC Users Meeting Argonne National Lab Chicago, IL November 4, 2011

ALC USERS

The science of ALICE

Defining questions:

What are the phases of strongly interacting matter, and what roles do they play in the cosmos?

What does QCD predict for the properties of strongly interacting matter?

"The Frontiers of Science: A Long Range Plan"

http://science.energy.gov/np/nsac/

Heavy-ion collisions for HEP folks

Collision anatomy

Impact parameter

 $0 < b < ~2R_{Pb}$ (R_{Pb} \approx 6.6 fm)

Nucleon position s Nuclear density $\rho(s, z)$

Key quantities

N_{part}: # nucleons participating in collision

N_{coll}: # binary (nucleon-nucleon) collisions

z (fm)

"Glauber Modeling in High-Energy Nuclear Collisions" Annu. Rev. Nucl. Part. Sci. 2007.57:205-243

Heavy-ion collisions for HEP folks

Collision Centrality

b, N_{part}, N_{coll} aren't directly measurable... but multiplicity is (e.g. E_{zdc}, N_{ch}).

Assume measured N_{ch} relates monotonically (& inversely) to b

Bin real events in N_{ch} quantiles, Glauber events in b quantiles, & match them

The procedure has an uncertainty.

ALICE centrality resolution < 1%.

Pb-Pb @ LHC: the November revolution

November 2009 First p-p collisions, 900 GeV November 2010 First Pb-Pb collisions, 2.76 TeV LPbPb reached 2 x 10²⁵ cm⁻² s⁻¹ (Pb-Pb Design luminosity = 10²⁷) November 2011 Expect 5x increase over 2010 ∫Ldt

5

A Large Ion Collider Experiment

A Large Ion Collider Experiment

Friday, November 4, 2011

Bulk/Global Observables

Multiplicity Transverse Energy Source Imaging

Charged Particle Multiplicity

For 0-5% most central collisions at 2.76 TeV:

 $dN_{ch}/d\eta = 1584 \pm 76$ (sys.)

 8.3 ± 0.4 per participating nucleon pair - higher than many expectations

Centrality dependence of N_{ch}

Transverse Energy

dE_T/dη vs. N_{part}

Measured using ALICE tracking detectors

Corrected by f_{total} from MC to get charged \rightarrow total E_T

Trends

Again, LHC and RHIC have similar centrality dependence

~2.5x higher than at RHIC Consistent with larger $\langle p_T \rangle$

Source size from interferometry

Anisotropy and Correlations

Elliptic flow Higher-order anisotropy harmonics Correlations and Fourier decomposition

Hydrodynamics and nuclear collisions

Initial spatial eccentricity \Rightarrow final momentum eccentricity

Measure 2nd Fourier coefficient v₂

$$v_n = \left\langle \cos n(\phi - \Psi_n) \right\rangle$$

$$\frac{dN}{d\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos n(\phi - \Psi_n)$$

Integrated v₂

v₂ vs. collision energy for 20-30% most central collisions

Hydro behavior follows extrapolated RHIC trend

Matches RHIC within 5%

Differential v₂: pions, kaons, protons

Significant mass dependence

Expected: radial flow gives all species similar β , thus different p_T

Need hadronic rescattering to match antiprotons in central data (UrQMD/VISHNU, arXiv:1108.5323v1)

Two-particle correlations

17

Two-particle correlations

Pb-Pb 2.76 TeV

Low-p_T correlations

Broad away side Near side "ridge" at large $\Delta \eta$

Ultra-central (0-2%), $\Delta \eta > 0.8$

 $2 < p_{-}^{t} < 2.5 \text{ GeV/c}$

 $1.5 < p_{-}^{a} < 2 \text{ GeV/c}$

 χ^2 /ndf = 33.3 / 35

0.8 < I∆ηI < 1.8

Doubly-peaked away side n=3 is strongest harmonic

Pb-Pb 2.76 TeV, 0-2% central

1.015

1.01

1.005

0.995

0.99

1.002

C(Δφ)

atio

Higher-order harmonics

v_n from 2-particle cumulant Higher n terms help constrain viscous hydro models

Stronger damping expected for higher n

v_n from 2-particle correlations **Centrality dependence**

Strong for v₂: collision geometry Weak for v₃+: fluctuations

0.25

0.2

É 0.15 ℃ ~ 0.1

0.05

0

Friday, November 4, 2011

0

2

Identified Particles

Spectra Particle ratios

Identified Particles

Friday, November 4, 2011

π, K, p spectra

Harder spectra and larger yield than at RHIC

Comparison with hydro models

Harder spectra and lower proton yield than predictions

Chemical freezeout temperature T_{ch} lower than hydro expectation

Particle ratios

Symmetric particle - antiparticle production at LHC $\mu_B \approx 0$

Energy Loss Observables

RAA

- unidentified particles
- heavy-flavor
- event-plane dependence

High-p_T correlations

Not included:

high-p_T v2 (see talk by A. Dobrin)

"Jet Quenching", D. d'Enterria arxiv:0902.2011

Charged particle RAA

$$R_{AA} = \frac{\mathrm{d}N_{AA}/\mathrm{d}p_T^2 \,\mathrm{d}y}{\langle N_{\mathrm{coll}} \rangle \mathrm{d}N_{pp}/\mathrm{d}p_T^2 \,\mathrm{d}y}$$

P_T dependence

Min. at 6-7 GeV, rising with p_T Consistent with pQCD expectations

Centrality dependence

Greater suppression for more central collisions

Strange quark nuclear modification

Strange baryon enhancement < 9 GeVStrange meson modification similar to charged particles All yields similarly suppressed at high p_T

Reaction plane dependence

Friday, November 4, 2011

Jet pair yield modification

High-pT correlations How do Pb-Pb yields compare to pp?

Calculate integrated yield per trigger particle in both systems Requires removal of combinatoric nonjet background

Keep to high p_T Flow « jet-induced correlation

IAA: Two-particle version of RAA

$$I_{AA} = \frac{\left[\frac{1}{N_{\text{trig}}} \frac{dN_{\text{pairs}}}{d\Delta\phi}\right]_{PbPb}}{\left[\frac{1}{N_{\text{trig}}} \frac{dN_{\text{pairs}}}{d\Delta\phi}\right]_{pp}}$$

IAA vs. associated pt

No strong modification Central (0-5%)

Near-side enhancement ($I_{AA} \approx 1.2$); away-side suppression ($I_{AA} \approx 0.6$) Both consistent with in-medium energy loss

Heavy Flavor and Quarkonia

D meson suppression

pp reference from 7 TeV data, scaled to 2.76 with FONLL

Charm is suppressed x4-5!

Compatible with pion R_{AA}, perhaps $R_{AA}^{D} > R_{AA}^{\pi}$? Stay tuned for 2011 run

Open charm v₂

D⁰ **v**₂: first heavy-ion measurement

From $J/\psi \rightarrow \mu^+\mu^-$ at forward rapidity R_{AA} larger than at RHIC

Many effects to consider: initial-state / cold nuclear matter, recombination, color screening,

Medium properties from Pb-Pb collisions

Source:

energy density > 15 GeV/fm³ - 3x higher than at RHIC particle multiplicity and source size 2x RHIC lives 30% longer

Opacity:

strong quenching, even for heavy quarks size & geometry-dependent; similar to RHIC

Fluidity:

viscous hydro (+ hadronic rescattering) describes anisotropy well at low-intermediate p_T hydro + fluctuations naturally explain higher harmonics & correlation features strong radial flow - $\beta \approx 2/3$ higher flow harmonics are helping to pin down QGP viscosity

Outlook

5x increase in dataset this November p + Pb collisions! EMCal trigger - jets to 200 GeV

arxiv date	system	energy (TeV)	observable	published in
1 28/11/09	рр	0.9	charged particle dN/dη	EPJC 65(2010)111
2 18/04/10	рр	0.9, 2.36	charged particle dN/dη, mult. distr.	EPJC 68(2010)89
3 20/04/10	рр	7	charged particle dN/dη, mult. distr.	EPJC 68(2010)345
4 28/06/10	рр	0.9, 7	antiproton/proton ratio	PRL 105(2010)072002
5 03/07/10	рр	0.9	pion HBT	PRD 82(2010)052001
6 05/07/10	рр	0.9	charged particle pT spectra	PLB 693(2010)53
7 17/11/10	PbPb	2.76	charged particle dN/dη	PRL 105(2010)252301
8 17/11/10	PbPb	2.76	charged particle v2	PRL 105(2010)252302
9 05/12/10	PbPb	2.76	charged particle RAA	PLB 696(2011)30
10 08/12/10	PbPb	2.76	centrality dependence of Nch	PRL 106(2011)032301
11 15/12/10	рр	0.9	K0, ϕ , Λ , cascade	EPJC 71(2011)1594
12 17/12/10	PbPb	2.76	pion HBT	PLB 696(2011)328
13 19/01/11	рр	0.9, 7	pion HBT	arXiv:1101.3665v1
14 21/01/11	рр	0.9	pion, kaon, proton	EPJC 71(2011)1655
15 02/05/11	рр	7	J/Ψ	arXiv:1105.0380v1
16 19/05/11	PbPb	2.76	charged particle v3, v4, v5	arXiv:1105.3865v1
17 12/09/11	PbPb	2.76	harmonic decomposition	arXiv:1109.2501v1
18 01/10/11	PbPb	2.76	charged particle IAA	arXiv:1110.0121v1
			A. Adare (ALICE)	

Friday, November 4, 2011

Centrality determination

Single vs. pair Fourier decomposition

Single-particle anisotropy (the familiar vn coefficients)

$$\frac{\mathrm{dN}}{\mathrm{d}\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n(p_T) \cos\left(n(\phi - \Psi_n)\right)$$

Pair anisotropy Similar form but indep

Similar form, but indep. of Ψ_n

$$\frac{\mathrm{dN}^{\mathrm{pairs}}}{\mathrm{d}\Delta\phi} \propto 1 + \sum_{n=1}^{\infty} 2V_{n\Delta}(p_T^t, p_T^a) \cos\left(n\Delta\phi\right)$$

Extract directly from 2-particle azimuthal correlations!

$$V_{n\Delta} \equiv \langle \cos(n\Delta\phi) \rangle = \sum_{i} C_{i} \cos(n\Delta\phi_{i}) / \sum_{i} C_{i}.$$

A. Adare (ALICE)

1

38

Single vs. pair Fourier decomposition

Single-particle anisotropy (the familiar vn coefficients)

$$\frac{\mathrm{dN}}{\mathrm{d}\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n(p_T) \cos\left(n(\phi - \Psi_n)\right)$$

Pair anisotropy Similar form, but indep. of Ψ_n

$$\frac{\mathrm{dN}^{\mathrm{pairs}}}{\mathrm{d}\Delta\phi} \propto 1 + \sum_{n=1}^{\infty} 2V_{n\Delta}(p_T^t, p_T^a) \cos\left(n\Delta\phi\right)$$

Extract directly from 2-particle azimuthal correlations!

$$V_{n\Delta} \equiv \left\langle \cos\left(n\Delta\phi\right)\right\rangle = \sum_{i} C_{i} \cos\left(n\Delta\phi_{i}\right) / \sum_{i} C_{i}$$

A. Adare (ALICE)

38

Fourier Decomposition

"Power spectrum" of pair Fourier components $V_{n\Delta}$

For ultra-central collisions, n = 3 dominates. In bulk-dominated correlations, the n > 5 harmonics are weak.

 $V_{2\Delta}$ dominates as collisions become less central. Collision geometry, rather than fluctuations, becomes primary effect

Fourier Decomposition

"Power spectrum" of pair Fourier components $V_{n\Delta}$

For ultra-central collisions, n = 3 dominates. In bulk-dominated correlations, the n > 5 harmonics are weak.

 $V_{2\Delta}$ dominates as collisions become less central. Collision geometry, rather than fluctuations, becomes primary effect

Fourier Decomposition

"Power spectrum" of pair Fourier components $V_{n\Delta}$

For ultra-central collisions, n = 3 dominates. In bulk-dominated correlations, the n > 5 harmonics are weak.

 $V_{2\Delta}$ dominates as collisions become less central. Collision geometry, rather than fluctuations, becomes primary effect

The factorization hypothesis

Factorization of two-particle anisotropy

For pairs correlated to one another through a common symmetry plane Ψ_n , their correlation is dictated by bulk anisotropy:

$$\begin{split} V_{n\Delta}(p_T^t, p_T^a) &= \langle \langle e^{in(\phi_a - \phi_t)} \rangle \rangle \\ &= \langle \langle e^{in(\phi_a - \Psi_n)} \rangle \rangle \langle \langle e^{-in(\phi_t - \Psi_n)} \rangle \rangle \\ &= \langle v_n \{2\}(p_T^t) v_n \{2\}(p_T^a) \rangle. \end{split}$$

 $V_{n\Delta}$ would be generated from one $v_n(p_T)$ curve, evaluated at p_T^t and p_T^a .

Factorization expected:

✓ For correlations from collective flow. Flow is global and affects all particles in the event.

X Not for pairs from fragmenting di-jets.

Di-jet shapes are "local", not strongly connected to Ψ_n. A. Adare (ALICE)

The factorization hypothesis

Factorization of two-particle anisotropy

For pairs correlated to one another through a common symmetry plane Ψ_n , their correlation is dictated by bulk anisotropy:

$$\begin{split} \mathcal{V}_{n\Delta}(p_T^t, p_T^a) &= \langle \langle e^{in(\phi_a - \phi_t)} \rangle \rangle \\ &= \langle \langle e^{in(\phi_a - \Psi_n)} \rangle \rangle \langle \langle e^{-in(\phi_t - \Psi_n)} \rangle \rangle \\ &= \langle v_n \{2\}(p_T^t) v_n \{2\}(p_T^a) \rangle. \end{split}$$

 $V_{n\Delta}$ would be generated from one $v_n(p_T)$ curve, evaluated at p_T^t and p_T^a .

Factorization expected:

✓ For correlations from collective flow. Flow is global and affects all particles in the event.

X Not for pairs from fragmenting di-jets. Di-jet shapes are "local", not strongly connected to Ψ_n. A. Adare (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \ge v_n(p_T^a)$ product.

- Fit supports factorization at low p_T^a
- \Rightarrow suggests flow correlations.
- Fit deviates from data in jet-dominated high p_T^a region
- ⇒ collective description less appropriate._{A. Adare} (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \ge v_n(p_T^a)$ product.

- Fit supports factorization at low p_T^a
- \Rightarrow suggests flow correlations.
- Fit deviates from data in jet-dominated high p_T^a region
- ⇒ collective description less appropriate._{A. Adare} (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \ge v_n(p_T^a)$ product.

- Fit supports factorization at low p_T^a
- \Rightarrow suggests flow correlations.
- Fit deviates from data in jet-dominated high p_T^a region
- ⇒ collective description less appropriate._{A. Adare} (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \ge v_n(p_T^a)$ product.

- Fit supports factorization at low p_T^a
- \Rightarrow suggests flow correlations.
- Fit deviates from data in jet-dominated high p_T^a region
- ⇒ collective description less appropriate._{A. Adare} (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \ge v_n(p_T^a)$ product.

- Fit supports factorization at low p_T^a
- \Rightarrow suggests flow correlations.
- Fit deviates from data in jet-dominated high p_T^a region
- ⇒ collective description less appropriate._{A. Adare} (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \ge v_n(p_T^a)$ product.

- Fit supports factorization at low p_T^a
- \Rightarrow suggests flow correlations.
- Fit deviates from data in jet-dominated high p_T^a region
- ⇒ collective description less appropriate._{A. Adare} (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \ge v_n(p_T^a)$ product.

- Fit supports factorization at low p_T^a
- \Rightarrow suggests flow correlations.
- Fit deviates from data in jet-dominated high p_T^a region
- ⇒ collective description less appropriate._{A. Adare} (ALICE)

High-p_T^t anisotropy

High-pt v_n is finite, in fact fairly large $_{6}$ $_{8}$ $_{10}$ $_{12}$ $_{14}$ $_{16}$ $_{18}$ $_{20}$ If from pathlength-dependent quenching, correlations should reflect (feV/c) High-p_T^t, low p_T^a pair correlation due to quenching and flow, respectively.

Published ALICE vn{2}

PRL 107 032301 (2011) Scalar-product (SP) method |Δη| > 1.0

Identified hadron (p_T)

About 20% higher than at RHIC for pions, kaons, and protons

Compared to RHIC

ALICE R_{AA} lower than at RHIC Reflects larger PbPb system

Friday, November 4, 2011

