

Dihadron correlations in the ALLCF experiment

Andrew Adare

Yale University on behalf of The ALICE collaboration

6th International Workshop on High-p_T physics at the LHC Utrecht, NL - 4 April 2011

Two-particle correlations

-0.5

-1

-1.5

4 Δφ

2

3

2

1

0

-1

Analysis (I): the data

12 million min-bias Pb+Pb events High tracking efficiency --> small correction, small systematics High occupancy capability in TPC

Pair e Contamo, two-track efficiencies, and merging where andied in Monte Carlo...negligible at high p_T

Momentum resolution

Shown right for global (TPC + ITS) tracks $\frac{1}{N^{AA}}$: $\frac{1}{dp_T d\eta}$

TPC-or N_A^* tracks used in this analysis to improve acceptance (so $\sigma(p_T)$ somewhat how here) $\sigma(p_T) = \frac{1}{N_{pT}^{pp}} + \frac{1}{D_T} + \frac{1}{D_T}$

Cross-check done using global tracks...consistent results found

*Silicon Pixel Detector was also included to constrain vertex

$\Delta \phi - \Delta \eta$ distributions - intermediate p_T

3-4 GeV/c triggers, central Pb+Pb:

Prominent near-side ridge Near side jet emerges with rising associated p_T Broad, flat away side correlation strength does not rise with assoc. p_T (compared to near side)

 $C(\Delta \phi)$ Not bkg. subtracted

$\Delta \phi - \Delta \eta$ distributions - high p_T

$\Delta \phi$: ALICE vs. STAR at high p_T

0-5% Pb+Pb @ 2.76 TeV: Larger combinatoric background (no surprise) Away side yield is ~comparable, while near side is 3-4x larger. Why?

Monday, April 4, 2011

Kinematics at the LHC vs. RHIC

Near-side correlations

Requiring a trigger particle means pT,**parton > pT**,**trig + pT**,**assoc**.

On the recoil side

No trigger: p_{T,parton} > p_{T,assoc}.

Kinematics at the LHC vs. RHIC

Near-side correlations

No trigger: pT,parton **> p**T,assoc.

Requiring a trigger particle means p_{T,parton} > p_{T,trig} + p_{T,assoc}.

On the recoil side

Parton p_T vs. associated p_T - $p_{T,trig}$ > 8 GeV/c:

Near side samples higher p_{T,parton} than away side
 At fixed p_{T,trig} & p_{T,assoc}, much larger p_{T,parton} at LHC

Analysis (II): yield extraction

Handling background The non-jet component must be characterized and removed No known assumption-free methods... Go to high pt for reduced bias Trigger pt 8-15 GeV/c Associated pt > 4GeV/c, always with ptt > pta

Work with several bkg. shape/ normalization schemes, compare Differences gauge systematics

Ultimately ZYAM is used Different "M" definitions --> sys. uncertainty

Different bkg shape ansatzes:

- v₂-only

- flat pedestal

Different ZYAM levels:

- n-lowest-bin averages
- const. fit over transverse region

Yield modification: ICP and IAA

Compare $1/N_{trig} dN/d\Delta \phi$ in A+A to a reference

Integrate yields in selected $\Delta \phi$ range Here, 0 (π) ± 0.7 for near (away) side

ICP reference: 60-90% yield

IAA reference: Normally p+p data, today I show pythia

$$I_{CP}(p_{T,trig}; p_{T,assoc}) = \frac{Y_{central}^{AA}(p_{T,trig}; p_{T,assoc})}{Y_{peripheral}^{AA}(p_{T,trig}; p_{T,assoc})}$$

$$I_{AA}(p_{T,trig}; p_{T,assoc}) = \frac{Y^{AA}(p_{T,trig}; p_{T,assoc})}{Y^{pp}(p_{T,trig}; p_{T,assoc})}$$

Benchmark 1: IAA at PHENIX

PHENIX h-h:

Away-side I_{AA}: low-p_T enhancement, high-p_T suppression.

PHENIX π⁰-h:

High-p_T identified π^0 triggers R_{AA} data, theory comparisons

$$I_{AA}(p_T^a, p_T^b) = \frac{Y_{jet_ind}^{A+A}(p_T^a, p_T^b)}{Y_{jet_ind}^{p+p}(p_T^a, p_T^b)}.$$

Observations:

Focus on $p_{t,trig} > 5$ and $p_{t,assc} > 2$ GeV

- I_{AA} > R_{AA}
- IAA ~ flat with pT, assc
- I_{AA} increases with trigger p_{T}

Benchmark 2: D_{AuAu}/D_{dAu} from STAR

Near side Icp

Shown for two background shape assumptions

1. v₂-only (line)
v₂ estimated as uniform
extrapolation from data - thus
probably an overestimate

Useful especially for "historical" RHIC comparisons

2. Uniform bkg. (points) Result ~same as for (1): jet S/B is high enough that bkg. assumptions are not influential

I_{AA} ~ 1.2-1.3

Near side yield is enhanced! Interesting.

ICP on near and away side

Enhancement on near side, suppression on away side Flat or v₂-only bkg. assumptions give same results above 5 GeV Away side I_{AA} ~ 0.6 at intermediate p_T Note on rise at last point: p_{T, trig} > p_{T, assoc} requirement in overlapping p_T bin influences kinematics: interpret with care.

Monte Carlo I_{AA} reference

In mid-March the LHC provided a few p+p days @ 2.76 TeV, but too late to use for today.

For now, we use pythia 6, Perugia-0 tune.

Shape agrees closely with ALICE data at 0.9 (top) and 7 TeV (below).

Normalization was slightly high; required scaling by 0.8 - 1.0 to match data.

A single scaling factor was interpolated for 2.76 TeV: 0.93 ± 0.13

This is the dominant systematic for IAA, Pythia

I_{AA} using pythia reference

Observations

Near side yields enhanced by 1.3-1.5 for p_{T, assoc} > 4 GeV/c in central events Some enhancement measured even in peripheral data Away side 0.5-0.7 for central, ~1 for peripheral

IAA VS. PHENIX IAA result

ALICE I_{AA} is larger than PHENIX result.

Monday, April 4, 2011

IAA VS. ALICE RAA result

IAA(0-20%) is much higher than RAA(0-5%)

Looks in fact more like RAA(70-80%)!

For 8-15 GeV triggers, the pT,assoc distribution is much harder than for min-bias. Flatter spectra --> ratios closer to 1

Near-side vs. away-side IAA

Consider partons losing ΔE , then fragmenting in vacuum. Away side:

 ΔE lowers parton <pt> \Rightarrow fewer pairs/trigger in A+A on away side.

Near side:

Including the trigger particle requires partons at higher initial energies.

19

The nontrivial near side*

If ΔE leads to $I_{AA}^{near} > 1$, then why wasn't this also seen at RHIC?

1. Phase space considerations

Steeper parton production at RHIC. There, high-pt triggers have larger z, lower assoc. yields.

2. Parton spectral shape: Consider a fixed ΔE (i.e. every parton loses 1 GeV) For an exponential, the slope is unchanged. Energy loss is independent of E.

Probing different parton energy by requiring a trigger particle does not change the associated per-trigger yield.

Thus I_{AA} can be 1 even for large ΔE . Under these conditions, surface bias cannot be inferred from $I_{AA}=1$.

*Thanks to P. Jacobs for useful discussions on this topic

The nontrivial near side*

If ΔE leads to $I_{AA}^{near} > 1$, then why wasn't this also seen at RHIC?

1. Phase space considerations

Steeper parton production at RHIC. There, high-pt triggers have larger z, lower assoc. yields.

2. Parton spectral shape:
Consider a fixed ΔE
(i.e. every parton loses 1 GeV)
For a power law, the slope becomes flatter.

If phase space permits, the trigger requirement can lead to increased per-trigger associated yield.

Thus I_{AA} can be > 1.

The nontrivial near side*

Near-side fragmentation

Shower evolution for two-hadron final state is difficult theoretically.

I know of no near side I_{AA} / I_{CP} calculations in the literature.

Perhaps some theorists are interested in taking this on?

Summary

Near side

Significant enhancement observed at LHC, but not RHIC - different parent parton distribution at LHC?

Away side Significant quenching, but I_{AA} larger than at RHIC

Open questions Can parton energy loss be accessed from near-side observables?

Near-side fragmentation complicated: can it be calculated?

More to come Stay tuned for QM11

Thanks!

Extras

24

Energy loss and spectral ratios

Trends in IAA, RAA, ICP, etc. depend strongly on source shapes

A power-law example: use $A/(p_T - \Delta p_T)^n$ to check 3 scenarios:

- 1. constant yield loss reduce normalization A (i.e. all-or-nothing "punch-thru" E-loss fluctuations)
- 2. constant per-particle energy loss leftward shift by Δp_T
- 3. softening of spectra increase n

The slope of IAA^{away-side}

Systematic Uncertainties

- Detector efficiency and two-track effects
- Different detectors for centrality determination
- p_T resolution
 - Fold associated p_T distribution with momentum resolution

Detector efficiency	5-8%
Centrality selection	2-8%
p _⊤ resolution	3%
Pedestal calculation	7-20%
Integration window	0-3%

Ranges indicate different values for I_{CP}/I_{AA,Pythia} and near/away side

- Different pedestal determination schemes
- Integration window (between ±0.5 rad. and ±0.9 rad.)

Azimuthal projections

Central Pb+Pb and 7 TeV p+p (pT,assoc. 2-6 GeV/c)

From an early subset of Pb+Pb data (~4M events)

Broadened away side at lower pt, indistinct away-side peak at high pt

R_{AA} insensitive to n

 p_{T}^{-6} instead of p_{T}^{-8} spectrum has only small effect on R_{AA}

 $R_8 \approx R_6$

Slide from M. Van Leeuwen

Suppression at RHIC vs. LHC

PHENIX RAA:

~flat at 0.2

ALICE RAA:

sharp rise above 6 GeV

Caveat:

Identified mesons at PHENIX, non-PIDed hadrons in ALICE.

Monday, April 4, 2011

Low pt: large uncorrelated component

At Low pt, the LHC produces a much higher combinatorial background than at 200 GeV.

More independent hard scatterings per event, stronger NLO effects

 $\Delta \phi$ [rad]

Intermediate to high pt

The away side yield is comparable between the two energies, but the near side yield is much larger.

Also, away-side jet is broader (kt effects and radiation)

 $\Delta \phi$ [rad]