

A Large Ion Collider Experiment

European Organisation for Nuclear Research

Dihadron correlations at RHIC and the LHC with an update from the ALICE experiment

Andrew Adare

Yale University on behalf of The ALICE collaboration

27th Winter Workshop on Nuclear Dynamics Tuesday, 8 February 2011

Two-particle correlations

Finding patterns in violent nuclear collisions

This talk: triggered correlations

Ratio is the correlation function:

$$
C(\Delta \phi) \equiv \frac{N_{mixed}^{AB}}{N_{same}^{AB}} \cdot \frac{dN_{same}^{AB}/d\Delta \phi}{dN_{mixed}^{AB}/d\Delta \phi}
$$

Primary physics topics

Diverse range of accessible physics

Triggered Correlations at RHIC Jorrelations at F plane analysis [12]. No significant *v*⁴ systematic effects on the background term with a full line, and the background term with a full line, and the background term \mathbf{H} \mathbf{S} subtracted different correlation with circles for values and values \mathbf{S} boxes for the point-by-point systematic errors. The system- $\overline{}$ signal extraction. Charged hadron partners are reconstructed in the central arms using the drift chambers (DC) with hit association $\mathcal{O}(\mathcal{O})$ $F \cdot F \cdot H \cdot \mathcal{F}$ \blacksquare . The range \blacksquare

 4.1 ± 1.0 for central Au μ by μ and 2.1 ± 1.0 in p μ , and 2.1 ± 1.0 in p μ

correlation with the reaction plane orientation. Its effect

Tuesday, February 8, 2011

correlations using the central (0%–5%) Au data at the central (0%–5%) Au data at the central (0%–5%) Au data a

tify the trends in the shape and yield between these two

Charged hadrons in the ALICE TPC

TPC ideal for tracking in Pb+Pb

- **high occupancy capability**
- **good momentum resolution**
- **excellent pair acceptance**

potential to measure |Δη|<2.0, even beyond (although only |η|<0.8 currently reconstructed)

 < 2.0 20-60% T,assoc < 4.0 1.0 < p T,trig CorrFn 3.0 < p

Status update from ALICE

pairs

Correlation function

Pair-wise (vs. event-wise) normalization:

$$
C(\Delta \phi) \equiv \frac{N_{mixed}^{AB}}{N_{same}^{AB}} \cdot \frac{dN_{same}^{AB}/d\Delta \phi}{dN_{mixed}^{AB}/d\Delta \phi}
$$

Δφ-Δη distributions - intermediate pT

3-4 GeV/c triggers, central Pb+Pb:

Prominent near-side ridge Near side jet emerges with rising associated pT Broad, flat away side correlation strength does not rise with assoc. pt (compared to near side)

Not bkg. subtracted

Δφ-Δη distributions - high pT

Azimuthal projections

Central Pb+Pb and 7 TeV p+p (p_{T,assoc} 2-6 GeV/c)

From an early subset of Pb+Pb data (~4M events)

Broadened away side at lower pt, indistinct away-side peak at high pt Note - Pb+Pb background not removed

ALICE vs. STAR at high pT malized per trigger particle for central (0%–5%) Au der particle for central (*p*assoc *^T* ranges are shown. The height of the background

FIG. 1. Azimuthal correlation histograms of high *pT* charged **No strong emergence of away-side peak compared to RHIC** *p*assoc **Many caveats: non-identical pt bins, no acceptance or efficiency correction, partial statistics... T** . All α in this and succeed-all α in this and succeed-all α ing figures have units GeV*=c*. **Even so, away-side / near-side ratio appears smaller for 2.76 TeV Pb+Pb! Why?**

Tuesday, February 8, 2011

Quenching vs. kinematics

ATLAS

Direct observation of quenched recoil jet in Pb+Pb

acterized using the total transverse energy (Σ*E^T*) de-

with also: with also: with a wide azimuthal region. By selecting tracks with $\frac{1}{2}$

Beam rapidity gaps differ at LHC vs. RHIC and applying cell thresholds in the calorimeters (*E^T >* 700 MeV in the electromagnetic calorimeter, and *E >* 1 GeV in the

For fixed hadron pt, different parton energies are sampled, different z is presented by a sampling calorimeter made of steel and step \mathbb{R} *|*η*| <* 3*.*2. The hadronic calorimetry in the range *|*η*| <* 1*.*7 strip detectors surrounded by straw tubes. These event

Kinematics at the LHC vs. RHIC

Near-side correlations

Requiring a trigger particle means $p_{T,parton} > p_{T,trig} + p_{T,assoc}.$

On the recoil side

No trigger: pT,parton > pT,assoc.

Kinematics at the LHC vs. RHIC

Near-side correlations

No trigger: pT,parton > pT,assoc.

Requiring a trigger particle means $p_{T,parton}$ > $p_{T,trig}$ + $p_{T,assoc}$.

On the recoil side

Parton p_T **vs. associated** p_T **-** $p_{T,trig} > 8$ **GeV/c:**

- Near side samples higher p_{T,parton} than away side **- At fixed p_{T,trig} & p_{T,assoc}, much larger p_{T,parton} at LHC**

Figure 3: Average parton transverse momentum (pparton

 $\frac{1}{\sqrt{2}}$ as a function of the function of

Pythia acceptance study

Compare dihadron correlations between RHIC and LHC

Want to understand differences due to kinematics in absence of quenching.

Generated events in several pT,hard bins

Combine results, weighted by cross section.

Pythia acceptance study

Compare dihadron correlations between RHIC and LHC

Want to understand differences due to kinematics in absence of quenching.

Generated events in several pT,hard bins

Combine results, weighted by cross section.

Low pt: large uncorrelated component

At Low pt, the LHC produces a much higher combinatorial background than at 200 GeV.

More independent hard scatterings per event, stronger NLO effects

 $\Delta \phi$ [rad]

Intermediate to high pt

The away side yield is comparable between the two energies, but the near side yield is much larger.

Also, away-side jet is broader (kt effects and radiation)

 $Δφ$ [rad]

Pythia conditional yields

Full PYTHIA correlations (no bkg. subtraction)

Pythia conditional yields

Zero-yield-at-minimum applied to PYTHIA correlations

Affects yields at low-int. pt. Brings away-side yields to closer agreement.

Next steps 19 Subtracting the ridge: vacuum fragmentation (?) Subtracting the ridge

Jörn Putschke, Riken/BNL WS, 2011 8

Near side analysis "Jet" in Au+Au Jet+Ridge Jet in d+Au

flat background

v2 only (traditional)

v2+v3+v4 (under study, how to avoid removing the away-side jet?)

The Different ansatzes strongly affect **and a vacuum-like rragme** vacuum-like rragme **the shape and yield at low pt**

At high pt, results are less sensitive (jet signal dominates over Vn) p+p like (vacuum) fragmentation after energy loss?

M. Horner (STAR), QM'2006 and arXiv:1004.2377v2

nder study, now to avoid removing
 Ridge-subtracted peak matches STAR Au+Au / d+Au yield ratio: vacuum-like fragmentation

Jörn Putschke, Riken/BNL WS, 2011 8

p+p like (vacuum) fragmentation after energy loss?

Benchmark: IAA at RHIC A. ADARE *et al.* PHYSICAL REVIEW C **78**, 014901 (2008) p þ p). The IAA uncertainties include uncorrelated errors Renchmark: IAA at RH ground subtraction (α

integrated over a particular range in Au berlingen in Au þess af þess af þess af þess af þess af þess af þess
Au þess af þes

1

away-side head (HR) away-side shoulder (SR) Tuesday, February 8, 2011

FIG. 3 (color online). Away-side IAA for a narrow head j!\$ %

$\overline{1}$ general, the value of IAA depends on modifications to IAA depends on modifications to IAA depends on $\overline{1}$ design the both the trigger yields $\mathbf p$ is the trigger yield. For $\mathbf p$ $$ Grey bands around IAA = 1 represent 12% combined uncertainty on

correlation measurements, the per-trigger yield is a convenient **Focus on** $p_{t, trig} > 5$ **and** $p_{t, assoc} > 2$ **GeV**

 $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$

 $\frac{1}{2}$ **- I_{AA} > R_{AA}**

^T <

- $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ flat with processes \mathbb{R}^2 is small. Thus the per-trigger yields is small. Thus the per-**- IAA ~ flat with pt, assc**
- $\frac{1}{2}$ I_{AA} Increases with trigger p $_{\rm t}$ **EXAU deatle in the Automation in the SR for low property in the SR for low property in the SR for low property** suppressed in the HR for high pT . The shape of the Au+Au

 \mathbb{R}^n to the BBC trigger \mathbb{R}^n

 \mathcal{L}^{max}

for the Au+Au dataset; they are used to select triggers for

measured by the BBCs. After making an offline vertex cut of

 $Z_{\rm 30}$ cm and selecting good runs, a total of 840 million or 136µb−¹ Au+Au events were obtained. This is a 30 times higher than obtained in a previous analysis [18]. The

 $t_{\rm eff}$ statistics for μ equivalent to 73 nb−¹ and 2.5 pb−¹ sampled luminosities,

The collision vertex along the beam direction, z, was

 $p\in \mathbb{R}^n$ and pT \mathbb{R}^n

Suppression at RHIC vs. LHC

PHENIX RAA:

 ~flat at 0.2

ALICE RAA:

sharp rise above 6 GeV

Caveat:

Identified mesons at PHENIX, non-PIDed hadrons in ALICE.

Anticipating IAA, Icp measurements to see if trend persists in triggered correlations as well….

Energy loss and spectral ratios

Trends in IAA, RAA, ICP, etc. depend strongly on source shapes

A power-law example: use A/(p_T - Δp_T)ⁿ to check 3 scenarios:

- **1. constant yield loss reduce normalization A (i.e. all-or-nothing "punch-thru" E-loss fluctuations)**
- **2. constant per-particle energy loss leftward shift by** Δp_T
- **3. softening of spectra increase n**

Summary

ALICE in ideal position to push understanding of QGP state to the next stage from RHIC

Early look at correlation fns. shows qualitatively that the away side correlation strength is weaker than at RHIC Some of this is expected due to kinematics at LHC

Much work in progress for quantitative measurements - stay tuned!