

A Large Ion Collider Experiment

European Organisation for Nuclear Research

Dihadron correlations at RHIC and the LHC with an update from the ALICE experiment

Andrew Adare

Yale University on behalf of The ALICE collaboration

27th Winter Workshop on Nuclear Dynamics Tuesday, 8 February 2011

Two-particle correlations

Finding patterns in violent nuclear collisions

This talk: triggered correlations

Ratio is the correlation function:

$$C(\Delta\phi) \equiv \frac{N^{AB}_{mixed}}{N^{AB}_{same}} \cdot \frac{dN^{AB}_{same}/d\Delta\phi}{dN^{AB}_{mixed}/d\Delta\phi}$$

Primary physics topics

Diverse range of accessible physics

Triggered Correlations at RHIC

Charged hadrons in the ALICE TPC

TPC ideal for tracking in Pb+Pb

- high occupancy capability
- good momentum resolution
- excellent pair acceptance

potential to measure $|\Delta\eta| < 2.0$, even beyond (although only $|\eta| < 0.8$ currently reconstructed)

CorrFn 3.0 < p_{T,trig} < 4.0 1.0 < p_{T,assoc} < 2.0 20-60%

Status update from ALICE

pairs

Correlation function

Pair-wise (vs. event-wise) normalization:

$$C(\Delta\phi) \equiv \frac{N_{mixed}^{AB}}{N_{same}^{AB}} \cdot \frac{dN_{same}^{AB}/d\Delta\phi}{dN_{mixed}^{AB}/d\Delta\phi}$$

$\Delta \phi - \Delta \eta$ distributions - intermediate p_T

3-4 GeV/c triggers, central Pb+Pb:

Prominent near-side ridge Near side jet emerges with rising associated p_T Broad, flat away side correlation strength does not rise with assoc. pt (compared to near side)

 $C(\Delta \phi)$ Not bkg. subtracted

$\Delta \phi - \Delta \eta$ distributions - high pt

Tuesday, February 8, 2011

Azimuthal projections

Central Pb+Pb and 7 TeV p+p (pT,assoc. 2-6 GeV/c)

From an early subset of Pb+Pb data (~4M events) Broadened away side at lower pt, indistinct away-side peak at high pt Note - Pb+Pb background not removed

ALICE vs. STAR at high pT

No strong emergence of away-side peak compared to RHIC Many caveats: non-identical pt bins, no acceptance or efficiency correction, partial statistics...

Even so, away-side / near-side ratio appears smaller for 2.76 TeV Pb+Pb! Why?

Quenching vs. kinematics

ATLAS

Direct observation of quenched recoil jet in Pb+Pb

But also:

Beam rapidity gaps differ at LHC vs. RHIC

For fixed hadron pt, different parton energies are sampled, different z represented

11

Kinematics at the LHC vs. RHIC

Near-side correlations

Requiring a trigger particle means p_{T,parton} > p_{T,trig} + p_{T,assoc}.

On the recoil side

No trigger: pT,parton > pT,assoc-

Kinematics at the LHC vs. RHIC

Near-side correlations

Requiring a trigger particle means p_{T,parton} > p_{T,trig} + p_{T,assoc}.

On the recoil side

Parton p_T vs. associated p_T - $p_{T,trig} > 8$ GeV/c:

Near side samples higher p_{T,parton} than away side
At fixed p_{T,trig} & p_{T,assoc}, much larger p_{T,parton} at LHC

No trigger: pT,parton > pT,assoc.

Pythia acceptance study

Compare dihadron correlations between RHIC and LHC

Want to understand differences due to kinematics in absence of quenching.

Generated events in several pT,hard bins

Combine results, weighted by cross section.

Pythia acceptance study

Compare dihadron correlations between RHIC and LHC

Want to understand differences due to kinematics in absence of quenching.

Generated events in several p_{T,hard} bins

Combine results, weighted by cross section.

Low pt: large uncorrelated component

At Low pt, the LHC produces a much higher combinatorial background than at 200 GeV.

More independent hard scatterings per event, stronger NLO effects

 $\Delta \phi$ [rad]

Intermediate to high pt

The away side yield is comparable between the two energies, but the near side yield is much larger.

Also, away-side jet is broader (kt effects and radiation)

 $\Delta \phi$ [rad]

Pythia conditional yields

Full PYTHIA correlations (no bkg. subtraction)

Pythia conditional yields

Zero-yield-at-minimum applied to PYTHIA correlations

Affects yields at low-int. pt. Brings away-side yields to closer agreement.

Next steps

Naar eida analveie

flat background

v2 only (traditional)

v2+v3+v4 (under study, how to avoid removing the away-side jet?)

The Different ansatzes strongly affect the shape and yield at low pt

At high pt, results are less sensitive (jet signal dominates over Vn)

M. Horner (STAR), *QM*'2006 and arXiv:1004.2377v2

STAR Au+Au / d+Au yield ratio: Ridge-subtracted peak matches vacuum-like fragmentation

Benchmark: IAA at RHIC

Conclusions:

Focus on p_{t,trig} > 5 and p_{t,assc} > 2 GeV

- **I**AA > **R**AA
- IAA ~ flat with pt, assc
- IAA increases with trigger pt

Suppression at RHIC vs. LHC

PHENIX RAA:

~flat at 0.2

ALICE RAA:

sharp rise above 6 GeV

Caveat:

Identified mesons at PHENIX, non-PIDed hadrons in ALICE.

Anticipating I_{AA}, I_{CP} measurements to see if trend persists in triggered correlations as well....

Energy loss and spectral ratios

Trends in IAA, RAA, ICP, etc. depend strongly on source shapes

A power-law example: use A/($p_T - \Delta p_T$)ⁿ to check 3 scenarios:

- 1. constant yield loss reduce normalization A (i.e. all-or-nothing "punch-thru" E-loss fluctuations)
- 2. constant per-particle energy loss leftward shift by Δp_T
- 3. softening of spectra increase n

Summary

ALICE in ideal position to push understanding of QGP state to the next stage from RHIC

Early look at correlation fns. shows qualitatively that the away side correlation strength is weaker than at RHIC Some of this is expected due to kinematics at LHC

Much work in progress for quantitative measurements - stay tuned!