Harmonic decomposition of two particle angular correlations in Pb–Pb collisions at √s_{NN} = 2.76 TeV

Andrew Adare
Yale University
for the
ALICE Collaboration

October 20, 2011

Based on arXiv:1109.2501 (Submitted 12 Sep 2011)

Harmonics of Big and Little Bangs

Temperature anisotropy from CMB radiation

Power spectra hold a wealth of info from early epochs

The Astrophysical Journal Supplement Series, 192:14 (15pp), 2011 February

Can we similarly make "power spectra" from A+A collisions?

What can be learned?

Thursday, October 20, 2011

$$\Delta \phi = \phi_A - \phi_B \qquad \Delta \eta = \eta_A - \eta_B$$

$$\Delta \eta = \eta_A - \eta_B$$

Azimuthal correlation function:

$$C(\Delta\phi) \equiv \frac{N_{mixed}^{AB}}{N_{same}^{AB}} \cdot \frac{dN_{same}^{AB}/d\Delta\phi}{dN_{mixed}^{AB}/d\Delta\phi}$$

Analysis and dataset

Pb-Pb at 2.76 TeV

13.5 M events in 0-90% after event selection

Centrality

VZERO detectors resolution < 1%

Tracking

TPC points + ITS vertex optimum acceptance + precision for correlations

Event structure and shape evolution

In central and low-p_T "bulk-dominated" long-range correlations

A near side ridge is observed A very broad away side is observed, even doublypeaked for 0-2% central

In high-p_T "jet-dominated" correlations

The near-side ridge is not visible
The away-side jet is very strong; sharp like protonproton case

Event structure and

In central and low-p_T "bulk-dominations" long-range correlations

A near side ridge is observed A very broad away side is observed, ev peaked for 0-2% central

In high-p_T "jet-dominated" long-range correlations

The near-side ridge is not visible The away-side jet is very strong; sharp like protonproton case

Event structure and

In central and low-p_T "bulk-dominations long-range correlations

A near side ridge is observed A very broad away side is observed, ev peaked for 0-2% central

In high-p_T "jet-dominated" long-range correlations

The near-side ridge is not visible The away-side jet is very strong; sharp like protonproton case

Single vs. pair Fourier decomposition

Single-particle anisotropy

(the familiar v_n coefficients)

$$\frac{\mathrm{dN}}{\mathrm{d}\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n(p_T) \cos(n(\phi - \Psi_n))$$

Pair anisotropy

Similar form, but indep. of Ψ_n

$$\frac{\mathrm{dN^{pairs}}}{\mathrm{d}\Delta\phi} \propto 1 + \sum_{n=1}^{\infty} 2V_{n\Delta}(p_T^t, p_T^a) \cos(n\Delta\phi)$$

Extract directly from 2-particle azimuthal correlations!

$$V_{n\Delta} \equiv \langle \cos(n\Delta\phi) \rangle = \sum_{i} C_{i} \cos(n\Delta\phi_{i}) / \sum_{i} C_{i}.$$

Single vs. pair Fourier decomposition

Single-particle anisotropy

(the familiar v_n coefficients)

$$\frac{\mathrm{dN}}{\mathrm{d}\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n(p_T) \cos(n(\phi - \Psi_n))$$

Pair anisotropy

Similar form, but indep. of Ψ_n

$$\frac{\mathrm{dN^{pairs}}}{\mathrm{d}\Delta\phi} \propto 1 + \sum_{n=1}^{\infty} 2V_{n\Delta}(p_T^t, p_T^a) \cos(n\Delta\phi)$$

Extract directly from 2-particle azimuthal correlations!

$$V_{n\Delta} \equiv \langle \cos(n\Delta\phi) \rangle = \sum_{i} C_{i} \cos(n\Delta\phi_{i}) / \sum_{i} C_{i}.$$

A. Adare (ALICE)

 $\Delta \phi$ [rad]

Decomposition in bulk region

"Power spectrum" of pair Fourier components V_{n\Delta}

For ultra-central collisions, n = 3 dominates.

In bulk-dominated correlations, the n > 5 harmonics are weak.

(But not necessarily zero...work in progress.)

 $V_{2\Delta}$ dominates as collisions become less central.

Collision geometry, rather than fluctuations, becomes primary effect

Decomposition in bulk region

"Power spectrum" of pair Fourier components V_{n\Delta}

For ultra-central collisions, n = 3 dominates.

In bulk-dominated correlations, the n > 5 harmonics are weak.

(But not necessarily zero...work in progress.)

 $V_{2\Delta}$ dominates as collisions become less central.

Collision geometry, rather than fluctuations, becomes primary effect

Decomposition in bulk region

"Power spectrum" of pair Fourier components V_{n\Delta}

For ultra-central collisions, n = 3 dominates.

In bulk-dominated correlations, the n > 5 harmonics are weak.

(But not necessarily zero...work in progress.)

 $V_{2\Delta}$ dominates as collisions become less central.

Collision geometry, rather than fluctuations, becomes primary effect

Decomposition in jet region

Di-jet Fourier components V_n \(\Delta\)

Very different spectral signature than bulk correlations!

- All odd harmonics < 0, and finite to large n

Aside: Gaussian Fourier transform

Away-side peak is (sort of) Gaussian:

The F.T. of a Gaussian($\mu=\pi$, $\sigma_{\Delta\phi}$) is ±Gaussian($\mu=0$, $\sigma_n=1/\sigma_{\Delta\phi}$).

Fit demonstration: when $\mu=\pi$, odd $V_{n\Delta}$ coefficients are negative.

Aside: Gaussian Fourier transform

Away-side peak is (sort of) Gaussian:

The F.T. of a Gaussian($\mu=\pi$, $\sigma_{\Delta\phi}$) is ±Gaussian($\mu=0$, $\sigma_n=1/\sigma_{\Delta\phi}$).

Fit demonstration: when $\mu=\pi$, odd $V_{n\Delta}$ coefficients are negative.

Aside: Gaussian Fourier transform

Away-side peak is (sort of) Gaussian:

The F.T. of a Gaussian($\mu=\pi$, $\sigma_{\Delta\phi}$) is ±Gaussian($\mu=0$, $\sigma_n=1/\sigma_{\Delta\phi}$).

Fit demonstration: when $\mu=\pi$, odd $V_{n\Delta}$ coefficients are negative.

Trigger ptt dependence of Vnd

Similar trends as for v_n

Rises with p_T^t to maximum near 3-4 GeV, then declines

Centrality dependence:

 $V_{2\Delta}$ dominates as collisions become less central

Trigger ptt dependence of Vnd

Similar trends as for v_n

Rises with p_T^t to maximum near 3-4 GeV, then declines

Centrality dependence:

 $V_{2\Delta}$ dominates as collisions become less central

Trigger ptt dependence of VnA

Similar trends as for v_n

Rises with p_T^t to maximum near 3-4 GeV, then declines

Centrality dependence:

 $V_{2\Delta}$ dominates as collisions become less central

The factorization hypothesis

Factorization of two-particle anisotropy

For pairs correlated to one another through a common symmetry plane Ψ_n , their correlation is dictated by bulk anisotropy:

$$V_{n\Delta}(p_T^t, p_T^a) = \langle \langle e^{in(\phi_a - \phi_t)} \rangle \rangle$$

$$= \langle \langle e^{in(\phi_a - \Psi_n)} \rangle \rangle \langle \langle e^{-in(\phi_t - \Psi_n)} \rangle \rangle$$

$$= \langle v_n\{2\}(p_T^t) v_n\{2\}(p_T^a) \rangle.$$

 $V_{n\Delta}$ would be generated from one $v_n(p_T)$ curve, evaluated at p_T^t and p_T^a .

Factorization expected:

For correlations from collective flow.

Flow is global and affects all particles in the event.

X Not for pairs from fragmenting di-jets.

Di-jet shapes are "local", not strongly connected to Ψ_n.
A. Adare (ALICE)

The factorization hypothesis

Factorization of two-particle anisotropy

For pairs correlated to one another through a common symmetry plane Ψ_n , their correlation is dictated by bulk anisotropy:

$$V_{n\Delta}(p_T^t, p_T^a) = \langle \langle e^{in(\phi_a - \phi_t)} \rangle \rangle$$

$$= \langle \langle e^{in(\phi_a - \Psi_n)} \rangle \rangle \langle \langle e^{-in(\phi_t - \Psi_n)} \rangle \rangle$$

$$= \langle v_n\{2\}(p_T^t) v_n\{2\}(p_T^a) \rangle.$$

 $V_{n\Delta}$ would be generated from one $v_n(p_T)$ curve, evaluated at p_T^t and p_T^a .

Factorization expected:

For correlations from collective flow.

Flow is global and affects all particles in the event.

X Not for pairs from fragmenting di-jets.

Di-jet shapes are "local", not strongly connected to Ψ_n.

A. Adare (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \times v_n(p_T^a)$ product.

- Fit supports factorization at low pta
- ⇒ suggests flow correlations.
- Fit deviates from data in jet-dominated high pta region
- ⇒ collective description less appropriate. A. Adare (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \times v_n(p_T^a)$ product.

- Fit supports factorization at low pta
- ⇒ suggests flow correlations.
- Fit deviates from data in jet-dominated high pta region
- ⇒ collective description less appropriate. A. Adare (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \times v_n(p_T^a)$ product.

- Fit supports factorization at low pta
- ⇒ suggests flow correlations.
- Fit deviates from data in jet-dominated high pta region
- ⇒ collective description less appropriate. A. Adare (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \times v_n(p_T^a)$ product.

- Fit supports factorization at low pta
- ⇒ suggests flow correlations.
- Fit deviates from data in jet-dominated high pta region
- ⇒ collective description less appropriate. A. Adare (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \times v_n(p_T^a)$ product.

- Fit supports factorization at low pta
- ⇒ suggests flow correlations.
- Fit deviates from data in jet-dominated high pta region
- ⇒ collective description less appropriate. A. Adare (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 \ V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \times v_n(p_T^a)$ product.

- Fit supports factorization at low pta
- ⇒ suggests flow correlations.
- Fit deviates from data in jet-dominated high pta region
- ⇒ collective description less appropriate. A. Adare (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \times v_n(p_T^a)$ product.

- Fit supports factorization at low pta
- ⇒ suggests flow correlations.
- Fit deviates from data in jet-dominated high pta region
- ⇒ collective description less appropriate. A. Adare (ALICE)

Global fit parameters are v_n coefficients

 $2 \le n \le 5$ shown here (n=1 later)

Agreement with other methods? p_{T} (GeV/c)

Global fit parameters are v_n coefficients

 $2 \le n \le 5$ shown here (n=1 later)

Global fit parameters are v_n coefficients

 $2 \le n \le 5$ shown here (n=1 later)

Global fit parameters are v_n coefficients

 $2 \le n \le 5$ shown here (n=1 later)

Global fit parameters are v_n coefficients

 $2 \le n \le 5$ shown here (n=1 later)

High-precision measure of v_n from 2-particle correlations!

Agreement with other methods?

Comparison with ALICE v_n{2}

Published ALICE v_n{2}

PRL 107 032301 (2011) Scalar-product (SP) method $|\Delta\eta| > 1.0$

Comparison with ALICE v_n{2}

Comparison with ALICE v_n{2}

A. Adare (ALICE)

Thursday, October 20, 2011

Comparison with ALICE v_n{2}

Comparison with ALICE v_n{2}

Comparison with ALICE v_n{2}

V_{1Δ} behaves exceptionally...

The n=1 harmonic doesn't factorize

Including the near-side peak enhances disagreement.

V₁ behaves exceptionally...

The n=1 harmonic doesn't factorize

Including the near-side peak enhances disagreement.

No good global fit over all momenta

However, v₁{GF} is qualitatively similar to viscous hydro predictions...under investigation.

Summary

Factorization hypothesis and global fit:

Collective behavior (flow) describes bulk anisotropy (ridge, double-hump)

- No need to invoke Mach cone explanations.

Global fit coefficients (v_n{GF}) consistent with other measurements.

- Another method to measure flow coefficients

Bulk anisotropy factorizes, jet anisotropy does not.

- Bulk correlations related to global symmetries...
- But no such indication for shape of di-jet correlations.

Outlook:

Tackling open questions:

- Higher harmonics?
- Origin of V_{1△}? Relation to v₁?

Second-year Pb-Pb data taking is just around the corner!

Looking ahead...

from I.S. + hydro evolution (+ hadronization). How etween, e.g. very lumpy + viscous vs. smoother +

superposition of event-by event density fluctuations?

Sound perturbation animation

Hot spot / density perturbation produces coherent sound waves in hubble-expanding medium.

2D Sound perturbation simulation

Result from one event

Top

single particle distribution of particles having crossed freezout circle. Baseline was set at solid line to enhance effect (simulates combinatoric pedestal from averaging many events).

Bottom

Pair distribution showing 2peak away side structure.

Single-particle distribution

Pair distribution

Cross-correlations and autocorrelations

For single-particle distributions x^a, x^b with length and period N Pair cross-correlation*:

$$x_i^{ab} = \sum_{j=0}^{N-1} x_j^a x_{((i+j))_N}^b = i \mod N$$

$$0 \le i \le N-1$$

Three-particle cross-correlation:

$$x_{ij}^{ab} = \sum_{k=0}^{N-1} x_k^a \left(x_{((i+k))_N}^b + x_{((j+k))_N}^b \right)$$

Somewhat like a "really fast" MC technique for calculating difference between two periodic, random variables.

Linear cross correlations for nonperiodic variables (e.g. $\Delta\eta$ correlations) are even simpler.

*Similar to convolution (x^a o x^b). (Cross-correlation uses i+j, while convolution sum uses i-j).

Two peaks at +/- 1 rad

Top

Single-particle φ distribution with two Gaussian peaks.

 $\sigma = \pi/3$ and $\mu = \pm 1$.

Bottom

Autocorrelation representing pair distribution

Observation

S.P. dists. with 120° peak separation lead to strong v3 correlated component, even if the event is not triangular.

Double Gaussian sound perturbation

Pair $\Delta \phi$ distribution

Different inputs, similar results

Right:

v₁-v₄ sum {-0.05, 0.1, 0.1, 0.02}

Pair distribution qualitatively similar

Single-particle φ distributions

Pair Δφ distributions

Triangular-shaped events

Top

Pure v₃ single-particle φ distribution.

Bottom

Again, autocorrelation (= pair distribution)

Observations

Pair distribution has same shape as S.P. distribution (true for all n)

Away-side correlation strength equal to near side

Allows distinction from flux-tube/ perturbation vs. triangular flow pictures?

Three-particle correlations

Three-particle shapes are very different between the two cases...

Even if reality is some admixture between these, experimental sensitivity may be sufficient.

But we should examine the unsubtracted, central data! No ZYAM!!

High trigger, low associated pt

High-p_T triggers from jet fragmentation

Expect anisotropy from pathlength-dependent quenching (PLDQ).

Low-p_T partners from bulk

Expect anisotropy from flow

Do correlations factorize for this case?

Yes, but not as cleanly as for low p_T^t, low p_T^a correlations.

High trigger, low associated pt

High-p_T triggers from jet fragmentation

Expect anisotropy from pathlength-dependent quenching (PLDQ).

Low-p_T partners from bulk

Expect anisotropy from flow

Do correlations factorize for this case?

Yes, but not as cleanly as for low p_T^t , low p_T^a correlations.

Hot-spot / flux-tube / sound models

Similar qualitative features

J. Phys. G: Nucl. Part. Phys. 37 (2010) 094043

R P G Andrade et al

Figure 3. Single- (left) and two- (right) particle angular distributions in the simplified model.

Figure 4. Temporal evolution of energy density for the simplified model (left). Trajectories of the fluid cells around the tube (right).