The Future of Physics at RHIC Timeline, Upgrades, and Selected Topics

Andrew M. Adare University of Colorado

Mini-Symposium on the Future of Physics at RHIC APS Division of Nuclear Physics Meeting October 24, 2013

Outline

RHIC to date

RHIC plan Science, operations, and upgrades

Current and upcoming physics Mainly small systems and heavy flavor

Intermediate-term physics Beam energy scan phase II

Longer-term topics sPHENIX, eRHIC

Outline

And a few disclaimers

RHIC to date

RHIC plan Science, operations, and upgrades

Current and upcoming physics Mainly small systems and heavy flavor

Intermediate-term physics Beam energy scan phase II

Longer-term topics sPHENIX, eRHIC

This talk will NOT be:

- Comprehensive (will select a few topics)
- Uniformly covering time periods (near-future emphasis)
- Balanced (a bit PHENIX-centric, no spin)

RHIC: 13 years of success

and counting

- > 350 refereed papers
- $> 3 \times 10^4$ citations
- > 300 PhDs

- Broad range of ion species
- Wide \sqrt{s} range
- World's only polarized pp collider

RHIC performance history

Integrated luminosity since 2000

A + A

Polarized p + p

Huge rate improvements, thanks to hard work + incremental machine upgrades

RHIC among its peers

Currently unmatched A+A luminosity

RHIC remains a cutting-edge machine...and poised to remain competitive.

Some key goals and questions

for the next decade

QCD and the sQGP

How can strong coupling and asymptotic freedom be reconciled?

Some key goals and questions

for the next decade

QCD and the sQGP

How can strong coupling and asymptotic freedom be reconciled?

Nuclear phase transitions

- Location and sharpness of phase boundaries
- **sQGP** near $T_c \rightarrow$ weak coupling at asymptotically high T
- Critical point

Some key goals and questions

for the next decade

QCD and the sQGP

How can strong coupling and asymptotic freedom be reconciled?

Nuclear phase transitions

- Location and sharpness of phase boundaries
- **sQGP** near $T_c \rightarrow$ weak coupling at asymptotically high T
- Critical point

Parton distributions and interactions

- Distribution of sea quarks and gluons, and their spins, in space and momentum inside the nucleon
- Where does the saturation of gluon densities set in?
- Effect of nuclear environment on parton interactions

Year	Beam Species, \sqrt{s}	Science Goals	New Systems
2014	15 GeV <i>Au</i> + <i>Au</i> 200 GeV <i>Au</i> + <i>Au</i>	Heavy flavor flow, energy loss, Thermalization Quarkonium studies QCD Critical pt. search	Electron lenses 56 MHz SRF Full STAR HFT STAR MTD
2015- 2016	pp at 200 GeV p+Au, d+Au, ³ He+Au at 200 GeV High statistics Au+Au	Extract $\eta/s(T)$ & constrain initial quantum fluctuations Further HF studies Transverse spin physics	PHENIX MPC-EX Coherent <i>e</i> -cooling test

Year	Beam Species, \sqrt{s}	Science Goals	New Systems		
2014	15 GeV <i>Au</i> + <i>Au</i> 200 GeV <i>Au</i> + <i>Au</i>	Heavy flavor flow, energy loss, Thermalization Quarkonium studies QCD Critical pt. search	Electron lenses 56 MHz SRF Full STAR HFT STAR MTD		
2015- 2016	<i>pp</i> at 200 GeV <i>p+Au, d+Au, ³He+Au</i> at 200 GeV High statistics <i>Au+Au</i>	Extract $\eta/s(T)$ & constrain initial quantum fluctuations Further HF studies Transverse spin physics	PHENIX MPC-EX Coherent <i>e</i> -cooling test		
2017	No Run		Low energy <i>e</i> -cooling upgrade		
2018- 2019	5-20 GeV Au+Au (BES-2)	Search for QCD critical point & onset of deconfinement	STAR ITPC upgrade Partial sPHENIX commissioning (2019)		

Year	Beam Species, \sqrt{s}	Science Goals	New Systems	
2014	15 GeV <i>Au</i> + <i>Au</i> 200 GeV <i>Au</i> + <i>Au</i>	Heavy flavor flow, energy loss, Thermalization Quarkonium studies QCD Critical pt. search	Electron lenses 56 MHz SRF Full STAR HFT STAR MTD	
2015- 2016	<i>pp</i> at 200 GeV <i>p+Au, d+Au,</i> ³ <i>He+Au</i> at 200 GeV High statistics <i>Au+Au</i>	Extract $\eta/s(T)$ & constrain initial quantum fluctuations Further HF studies Transverse spin physics	PHENIX MPC-EX Coherent <i>e</i> -cooling test	
2017	No Run		Low energy e-cooling upgrade	
2018- 2019	5-20 GeV <i>Au+Au</i> (BES-2)	Search for QCD critical point & onset of deconfinement	STAR ITPC upgrade Partial sPHENIX commissioning (2019)	
2020	No Run		Complete sPHENIX installation STAR forward upgrades	
2021- 2022	Long 200 GeV Au+Au w/ upgraded detectors 200 GeV pp / d+Au	Jet, di-jet, γ -jet studies (parton transport, energy loss) Color screening of various $Q\bar{Q}$ states	sPHENIX	

Year	Beam Species, \sqrt{s}	Science Goals	New Systems			
2014	15 GeV <i>Au</i> + <i>Au</i> 200 GeV <i>Au</i> + <i>Au</i>	Heavy flavor flow, energy loss, Thermalization Quarkonium studies QCD Critical pt. search	Electron lenses 56 MHz SRF Full STAR HFT STAR MTD			
2015- 2016	ρρ at 200 GeV ρ+Au, d+Au, ³ He+Au at 200 GeV High statistics Au+Au	Extract $\eta/s(T)$ & constrain initial quantum fluctuations Further HF studies Transverse spin physics	PHENIX MPC-EX Coherent e-cooling test			
2017	No Run		Low energy <i>e</i> -cooling upgrade			
2018- 2019	5-20 GeV <i>Au+Au</i> (BES-2)	Search for QCD critical point & onset of deconfinement	STAR ITPC upgrade Partial sPHENIX commissioning (2019)			
2020	No Run		Complete sPHENIX installation STAR forward upgrades			
2021- 2022	Long 200 GeV <i>Au+Au</i> w/ upgraded detectors 200 GeV <i>pp</i> / <i>d+Au</i>	Jet, di-jet, γ -jet studies (parton transport, energy loss) Color screening of various $Q\bar{Q}$ states	sPHENIX			
2023- 2024	No Runs	-	Transition to eRHIC			

1. Current & near-term physics (A few selected topics)

Heavy flavor physics with PHENIX VTX

charm-bottom separation is within reach

VTX detector installed 2011, analyses underway

High vertex resolution \rightarrow heavy flavor e^{\pm} ID

Stay tuned for QM 2014!

c/b Proof of concept in simulation: Unfold PYTHIA electron vertices \rightarrow D,B p_T distributions

Separate modification of *c* and *b* quarks!

PHENIX silicon detector upgrades

Forward vertex tracker

PHENIX F-VTX Installed 2012 4 tracking planes with full azimuthal coverage over 1.2 $< |\eta| < 2.4$

Precise muon DCA measurements Distinguish c, b from π, K

Open heavy flavor Charm and beauty in *d+A / p+A*

Projected R_{pA} for open charm and beauty

STAR detector upgrades

HFT, MTD, and FGT Heavy Flavor Tracker

Muon Telescope Detector

- 2014: v_2 and R_{cp} from D^0 and HFE
- Later: Λ_c , $D^0 R_{AA}$
- 3 HFT talks this session

- MRPCs for muon ID and triggering
- High mass resolution for J/ψ & separate
 Υ states from dimuons
- Single muons and e-µ correlations

Both ready for physics 2014 Also: Forward GEM Tracker installed 2013

Heavy-flavor electron R_{dAu}

PHENIX, 1208.1293v1

Strong electron suppression in Au+Au, but $e_{HF}^{\pm} R_{dAu} > 1$.

CNM effects are the "Traditional" explanation for enhancement... Perhaps other explanations are appropriate as well.

A. Adare (CU Boulder)

Future Studies at RHIC

Low- p_T heavy flavor measurements

A new paradigm

Traditional focus: heavy quark energy loss

- Theory: simpler at high p_T; dominant effect
- Experiment: accessible at high p_T
- Emerging focus: collective effects
 - Recent measurements show fascinating features at low p_T
 - Significant constraint on hydro, transport, hadronization models
 - System size dependence highly informative

For the first time, precision heavy-flavor anisotropy is within reach, and Si upgrades are improving low p_T accessibility...stay tuned!

d+Au correlations: Flow in small systems?

PHENIX, 1303.1794v1 (accepted by PRL last week)

d+Au correlations: Flow in small systems?

PHENIX, 1303.1794v1 (accepted by PRL last week)

ATLAS p+Pb: peripheral (left) & central (right)

 v_2 in p+Pb rises with multiplicity at LHC. But large v_2 in d+Au at RHIC even at low multiplicity!

Large v_2 in d+Au from initial geometry?

Hydro + Langevin simulation in *d*+*Au*

Initial $\varepsilon \rightarrow$ final p anisotropy

Are small systems exhibiting hydrodynamic behavior like this?

Long-range correlations at RHIC

d+Au correlations

Ridge observed in Au-going, but not d-going direction

Long-range near-side anisotropy not easily explained by jets

Understanding long-range correlations Competing explanations:

- Initial-state fluctuations → long-range correlations
- Hydrodynamic effects
- CGC effects

Reality may require admixture of these. **Plan: Vary initial geometry** (p, d, ${}^{3}He+Au$) and look for anisotropy. If hydro, signal should be strong! Initial geometry not just fluctuations.

The PHENIX MPC-EX upgrade

Direct photons and neutral pions at forward rapidity

Silicon tracking / preshower addition to successful Muon Piston Calorimeter (3.1 < $|\eta| <$ 3.8)

Proposal: 1301.1096v1

8-layer Si minipad / tungsten sandwich design

- Preshower improves MPC EM/hadronic shower discrimination
- $\pi^0 \rightarrow \gamma \gamma$ up to p = 100 GeV/c
- Prompt γ identification

Commissioning in 2014, ready for physics in 2015

A. Adare (CU Boulder)

Forward physics with PHENIX MPC-EX

Improving constraints on nuclear PDFs

EPS09: the state of the art in parton distributions Valence and sea quarks well constrained.

But LHC mid-y / RHIC forward-y gluon distribution models have large discrepancies.

Forward physics with PHENIX MPC-EX

Direct photons: the "golden channel"

Prompt photons are free from final-state effects...clean access to low-*x* shadowing / saturations effects.

Simulation using full statistical / systematic constraint method on EPS09 nPDFs Projected measurement at 1σ and 2σ level

2. Intermediate-term physics Beam energy scan II (2018-2019)

Beam Energy Scan Phase II

Searching for critical boundaries

Plan: Cover BES I energies with longer runs & upgraded detectors. Range may be extended to include $\sqrt{s} < 7$ GeV runs (fixed-target).

Focus on correlation and fluctuation observables:

- Ist-order transition? Azimuthal HBT and v₁
- Partonic or hadronic matter? v₂/NCQ scaling
- Critical point? Correlation length, fluctuation measurements

RHIC is our best bet for investigating these key questions.

Intriguing hints from BES I

STAR, 1309.5681v1

- Net-proton $(N_{\rho} N_{\bar{\rho}})$ distributions over $\sqrt{s_{NN}} = 7.7$ -200 GeV
- Baseline expectation: p, p
 multiplicities are
 Poisson-distributed (Skellam dist.)

Cumulant ratios show $\sqrt{s_{NN}}$ dependence Not predicted by transport models (UrQMD does not model a critical point)

BES II Schedule

Planned for 2018-2019

Factor of 10 - 20 increase in statistics over BES 1 (with added step in μ_B), with several major detector upgrades in place.

$\sqrt{\mathrm{s}}$ (GeV)	62.4	39	27	19.6	14.6	11.5	7.7	4.5	3.9	3.5	3.0
$\mu_{ m B}$ (MeV)	70	115	155	205	250	315	420	585	630	670	720
BES I (M Evts)	67	130	70	36		11.7	4.3				
BES II (M Evts)				400	100	120	80	5	5	5	5
Rate (M Evts/day)	20	20	9	3.6	1.6	1.1	0.5				
e Cooling				8	6	4.5	3				
Weeks				2	1.5	3.5	7.5				

3. The next generation at RHIC SPHENIX (2020-2022)

Probing the medium in sPHENIX

Collisional energy loss infers medium composition

Why is energy loss at RHIC interesting?

- Not all radiative! Collisional energy loss is not negligible
- Collisional component depends on mass of scattering centers
- Also depends on length scale probed

Collisional E loss decreases as mass scale $\mu_{\rm S}$ increases

sPHENIX

Energy loss models require RHIC constraints

- WHDG fails to naturally match both RHIC and LHC *R*_{AA}
- RHIC *R_{AA}* provides important constraint
- Far more powerful energy loss observables available in sPHENIX

Horowitz & Gyulassy 1104.4958v1

We need tools to study the medium at different length scales and temperatures: Jets, heavy quarks, and photons.

sPHENIX is optimized for these probes. LHC alone is insufficient!

See following talks by J. Haggerty, J. Huang, and D. Morrison.

4. The eRHIC era

Gluons

Central to QCD, yet still enigmatic

Responsible for most of hadronic mass

- Self-interact, unlike photons → asymptotic freedom
- Gluons in nuclei dominate at small x

As nucleon moves faster,

- fluctuating gluons are longer-lived
- gluons crowd the hadron
- saturation momentum scale

$$Q_s^2(x) \propto A^{1/3} \left(\frac{1}{x}\right)^{0.2-0.3}$$

 \rightarrow Color glass condensate

Where is the saturation scale?

eRHIC

 $Q_{\rm s}^2(x) \propto A^{1/3} \left(\frac{1}{x}\right)^{0.2-0.3}$

An e + A collider is the ideal machine for physics at the saturation scale. See Talks by B. Mueller, A. Deshpande, A. Bazilevsky, and others.

Summary

4 time periods with a few highlights

Current and near future

Collective behavior in small systems New detectors \rightarrow heavy flavor physics

2 Beam energy scan phase II Constraining phase boundaries and the critical point

3 Adding T-dependence with sPHENIX Energy loss and partonic interactions near T_c

4 eRHIC era

Gluon nPDFs, saturation

Thank you