Particle Correlations from ALICE: Latest Results

Andrew M. Adare

Yale University

for the

What have we been up to since QM11?

Identified particle correlations...

Jet fragmentation vs. bulk physics

Near-side jet studies...

Shape & yield modification in Pb-Pb vs. pp

Single-event anisotropy...

Flow and fluctuations

3-particle correlations... Can nonflow signals be extracted?

Transverse momentum correlations... Harmonic analysis, flow comparisons

Charge balance studies... Angular dependence of balance functions

Femtoscopy with identified particles...

Space-momentum and baryon-antibaryon ($B\overline{B}$) correlations

A. Adare (ALICE)

Identified particle correlations

Baryon enhancement, first observed at RHIC, also found at LHC. Is there a jet contribution?

Identified particle correlations

Baryon enhancement, first observed at RHIC, also found at LHC. Is there a jet contribution?

Study in 2-particle $\Delta \phi - \Delta \eta$ correlations

- Non-identified trigger particle (5-10 GeV/c)
- Identified associated π ,K,p (1.5-4.5 GeV/c)

Measure conditional yields

- in "peak" region (Δφ,Δη near 0,0)
- in "bulk" regions ($\Delta \eta > 0.6$ on near side)

A. Adare (ALICE)

Conditional pion and proton spectra

Associated pion yields enhanced in peak vs. bulk regions.

Conditional pion and proton spectra

Associated pion yields enhanced in peak vs. bulk regions. Similar effect for protons, but weaker.

What are the p/π ratios?

p/π ratio vs. associated p_T

Pb-Pb, $\sqrt{s_{NN}} = 2.76$ TeV, 0-10% central

Near-side peak:

- p/π ratio similar to pp (pythia).
 In "bulk" region:
- p/π ratio strongly enhanced

Implications:

No medium-induced modification of jet particle ratios.

Baryon enhancement is from bulk, not jets.

Near-side peak shape analysis

Multiple observables suggest mediuminduced energy loss (RAA, IAA, Aj) Reconstructed-jet analyses: large-angle soft radiation, with weakly modified remnant jets.

Check with dihadron correlations

Study modification in width & changes in eccentricity

Isolate near-side jet

Use long-range (i.e. in $\Delta \eta$) correlations as proxy for background

Away-side uniform in $\Delta \eta$, vanishes after subtraction

Near-side shape evolution

Distinct broadening with increasing centrality

Near-side shape evolution

Distinct broadening with increasing centrality

Near-side jet peak width in $\Delta\phi$ and $\Delta\eta$

 $\sigma_{\Delta\eta} > \sigma_{\Delta\phi}$

In azimuthal direction Width is only weakly dependent on centrality

In longitudinal direction Jet peak becomes broader in more central collisions

Near-side jet peak width in $\Delta\phi$ and $\Delta\eta$

 $\sigma_{\Delta\eta} > \sigma_{\Delta\phi}$

In azimuthal direction Width is only weakly dependent on centrality

In longitudinal direction Jet peak becomes broader in more central collisions

Longitudinal broadening

Armesto, Salgado, Wiedemann (2004) Longitudinal flow deforms initially conical jet

Calculation (yellow band) in qualitative agreement with Pb-Pb trends Supports jet-flow interaction picture

Comparison to AMPT

AMPT 2.25 includes jets (string melting) and flow

Approximately reproduces $\sigma_{\Delta\eta}$ (below) and $\sigma_{\Delta\phi}$ (not shown) "Peakedness" (i.e. excess kurtosis = μ_4/σ^4 - 3) also similar to data

Agreement supports jet-flow interaction interpretation.

How are near-side yields modified?

Extending IAA to lower prassoc

Initial near-side I_{AA} measurement QM 2011, PRL 108, 092301 (2012):

First observation of near-side yield enhancement in central Pb-Pb

 I_{AA} only for $p_T^a > 3$ GeV/c, where jet signal becomes dominant

Now: alternative subtraction approach

Subtract conditional yields in "B" from peak region "S"

Avoid flow modulation by using same $\Delta\phi$ range for both signal and background

Near-side IAA

20-50% enhancement in central Pb-Pb, compared to pp

Near-side I_{AA} vs. $\Delta \eta$

I_{AA} decreases as the pair $\Delta \eta$ increases **Effect diminishes in more peripheral collisions Consistent with near-side peak narrowing**

Near-side I_{AA} vs. $\Delta \eta$

ALICE

I_{AA} decreases as the pair Δη increases Effect diminishes in more peripheral collisions Consistent with near-side peak narrowing

Near-side I_{AA} vs. $\Delta \eta$

I_{AA} decreases as the pair Δη increases Effect diminishes in more peripheral collisions

Consistent with near-side peak narrowing

Event-by-event v_n fluctuations

V_{2A} and V_{3A} measured in single events Large fluctuations observed even within a 1%-wide centrality bin Dashed: Expectation from bkg. fluctuations Excess anisotropy suggests flow fluctuations are large

Event-by-event v_n fluctuations

Event-by-event vn fluctuations

$V_{2\Delta}$ and $V_{3\Delta}$ distributions

ALICE

Measures the Q-vector distribution dN_{evt}/dQ_n^2

 $Q_n^2 = M + M(M-1)\langle \cos[n(\phi_i - \phi_j)] \rangle$

 $\frac{Dia}{I-1)}$ tribution broadened by flow fluctuations and nonflow fluctuations and nonflow reasurement

3-particle correlations

Flow dominates at low intermediate p_T

Two-particle correlations suggest flow dominance at low - intermediate p_T Any non-flow signal must be small

Full correlation (no background subtraction)

0-2% most central Pb-Pb: 3rd harmonic dominates Distinct off-diagonal peaks

Full correlation (no background subtraction)

40-50% most central $\Delta \phi$ (radians)

0-2% most central Pb-Pb: 3rd harmonic dominates Distinct off-diagonal peaks

40-50% mid-central Pb-Pb: 2nd harmonic dominates 4-peak structure

A. Adare (ALICE)

Full correlation (no background subtraction)

Charge-dependent correlations

 $\frac{1}{2} -2$ $\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac$

60 ty (%)

C. Pruneau (poster 418)

Charge-dependent correlations

Other harmonics: v₁-v₄

Centrality dependence

v₂-v₄ have similar features:

- independent of charge
- independent of $\Delta\eta$
- Agree with EP method:
- harmonics factorize

Other harmonics: v₁-v₄

Centrality dependence

V1:

Other harmonics: v1-v4

Centrality dependence

V1:

Hadron Gas:
$$q = \pm 1$$
 $q^2 = 1$
QGP: $q = \pm \frac{1}{3}; \frac{2}{3}$ $q^2 = \frac{1}{9}; \frac{4}{9}$
 $\in \quad \in$

- the charges and hence e from.
- should not be sensitive to: he impact parameter)
- the vdyn. which is not sensitive

M. Weber (2C)

tion efficiency is uniform over

2011/09/26

diffusive

experiment

B(Δη) and B(Δ ϕ)

Trends: Β(Δη) **B** falls to zero with increasing pair separation 0.5**B** becomes narrower in more central data 0 ×10⁻³ $\mathsf{B}(\Delta\phi)$ **"Focusing" observed in** central data **Consistent with** - Large radial flow - Long QGP lifetime, delayed creation of charges

A. Adare (ALICE)

ALI-PREL-28579

B(Δ η) and B(Δ φ)

PRELIMINARY

1.5

150

1

ALI-PREL-28579

B(Δη) and B(Δ ϕ)

A. Adare (ALICE)

Space-momentum correlations

Collective flow induces strong x-p correlations.

For flow-induced correlations, a common approximate m_T scaling of femtoscopic radii expected for particles of different mass.

Annihilation seen in BB correlations

- Final state rescattering proposed as explanation for low p yield If true, should be reflected in $B\overline{B}$ femtoscopic correlations
- ALICE observes significant annihilation in various $B\overline{B}$ channels Beginnings of precise interaction cross-section measurements for many rare $B\overline{B}$ pair types

Summary

Identified particles

 p/π enhancement comes from bulk, not jet fragmentation. BB femtoscopic correlations indicate pp annihilation in final state

Flow dominance at low to intermediate p_T

3-particle correlations: Inclusive distributions consistent with flow-only simulations Remaining signal small, but possibly nonzero
Transverse momentum and number density correlations: Agree with vn obtained by event-plane methods Fourier analysis supports long-range factorization for v2-v4

Broadening & enhanced yield of near-side jet peak

Significant longitudinal broadening in more central collisions, compared to pp Yield enhanced at all associated p_T , compared to pp

Charge dependence

Charge balance function "focused" in $\Delta \eta$ by strong radial flow + long QGP lifetime Fourier harmonics: v₁ sensitive to charge combination and $\Delta \eta$; v2 and higher are not

Comparison to published IAA

A. Adare (ALICE)

PID method

Correlate dE/dx from TPC and flight time from TOF detector.

Quantities relative to pion assumption

ALICE PERFORMANCE May 21st, 2012

The first harmonic

Full correlation (no background subtraction) - centrality evolution:

Full correlation (no background subtraction) - centrality evolution:

Full correlation (no background subtraction) - centrality evolution:

Full correlation (no background subtraction) - centrality evolution:

Full correlation (no background subtraction) - centrality evolution:

ALICE

Full correlation (no background subtraction) - centrality evolution:

0-5% most central

40-50% most central

∆¢ (radians)

A. Adare (ALICE)

3

4

2

1

5

ALICE

PERFORMANCE

0

-1

5

0

2

3

 $\Delta \phi$ (radians)

ALICE

PERFORMANC

3-particle correlations - flow simulation

Details:

Event by event v2,v3,v4,v5,psi2,psi3,psi4, and psi5 from Glauber model.

Using 3x the v2,v3,v4, and v5 as these are low-pt flow values.

Generate a Poisson number of triggers and associated particles with the flow correlations wrt the corresponding reaction plane. This gives realistic flow fluctuations and correlations between the reaction planes.

Isolating non-flow signals?

ALICE

Under the (strong) assumptions:

- Flow and non-flow sources combine additively & are independent
- Nonflow signal is positive definite (zero yield at minimum)
- 3-particle background fully described by combinations of v_2 , v_3 , and v_4

A nonzero structure remains:

ALICE

3

 $\Delta \phi$ (radians)

A. Adare (ALICE)

ALI-PREL-28162

