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Nuclear modification of heavy-flavor hadrons

The goal of this poster is to demonstrate that it is possible to infer the modification of heavy-flavor hadrons from
electron observables, namely (a) the displaced vertices of tracks identified as electrons and (b) electron invariant

yields vs pr.

In this exercise, heavy-flavor hadron p spectra are generated by pythia, then modified by a blast-wave inspired
estimate of R 44 [PLB 557 (2003) 26-32] (near right). Their decay electrons are used as the unfolding input "data”. 08

This form for the modification has gained support from a recent result by the STAR collaboration [1404.6185]

(far right).

The PYTHIA generator also provides the heavy-flavor decay kinematics, represented as matrices of decay
probabilities. This information, along with the (modified) electron data, forms a linear system that can be solved 0.2

using Bayesian inference.

R, for D mesons and B mesons
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A generative model for heavy-flavor decays
Each node in this directed graph represents a probability distribution.
The arrows represent conditional dependence.

The objective is to infer the distributions over the latent variables
Reharm PT @Nd hpeauey pr from the (shaded) electron observables.

Bayesian unfolding using displaced vertices and spectra
See 1201.4612v4 by G. Choudalakis. His terminology is used here:

T truth vector (length /NVy). T is the modeled truth (e.g. from MCQ).
R reconstructed N,-vector (again, e.g. in M(Q).
D measured data.
Bayes’ theorem says p(T|D) oc L(D|T) - n(T). In words:
the posterior probability o the likelihood x the prior probability.
The problem amounts to assuming 7(T) and computing L(D|T):
Ny
LOIT) =]]
r=1
The result is not a spectrum of points with covariance.
Instead, an Ny-dimensional posterior probability is obtained.

In each t bin, a 1D posterior is marginalized (integrated) from p(T|D).
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(for Poisson data)

Bayesian unfolding: implementation N
First, the mapping of T — R is established, yielding a truth spectrum T
and a matrix M containing P(r|t) values. P(r|t) is the probability for an
object from bin ¢ to be reconstructed in bin r.

Also, select 7(T). Non-constant prior = bias. Regularization!

Then:

| A trial T point is pulled from an Nt-dimensional sampling volume

AR=MT

B 7 (T)L(D|T) (or, in practice, the log) is computed from 7(T), R and D
(eq. 1)

T and L(D|T) are stored (T Tree)

H Repeat 1-4 until p(T|D) is well sampled

@ Marginalize: project p(T|D) to 1D posteriors p;(73|D)

The trickiest part is step 1.

Sampling L(D|T)x(T) in N; dimensions

The initial sampling volume must

be large enough to enclose the D,B meson p,

“answer” conservatively. T 10’y Unmodified pythia yield
On the other hand, the g 10 T — mgﬂgi:ﬁgﬁg‘s‘l’?“m?
hyper-volume grows enormously as g 10@—--': i .
the boundaries are expanded. Grid 2 ;L ||| T ,
sampling and uniform MC can g 105%_ 2l 1 :
quickly become prohibitive. = L
L B
The solution is Markov chain i
Monte Carlo (MCMQ). It is ergodic ~ 1°°F
(it visits the whole space). 0%l e b L |3
O 5 10 15 20 25 30 35 40

Moreover, it samples in direct D meson p. [GeVic]

proportion to p(T|D)! '

A sketch of the Metropolis-Hastings algorithm with a uniform = (T):

m Start with T, = T, and pick a large “hyperbox” around it. Save L.

m Propose a new point 17 near Tj;. Compute L;.

m s it better (L1 > Lg)? Keep it, update Ty < 17, and resample.

m If not, 7 gets a second chance. Roll the dice again and accept it with
a probability L/ Ly.

m Repeat...

After equilibration, a Markov chain has randomly toured the whole box,
but has climbed to the highest-likelihood regions most often.

B meson P, [GeV/c]

Simulated PYTHIA data

The simulation setup includes 10 million electrons sampled from a
distribution obtained from the PYTHIA generator. The samples are
independent of those used to model the heavy-flavor decays (see
below).

Simulated electron pt yields

Simulated HF e © DCA (e P 1.0-1.5)

| 1
: . 0.3
charge x DCA [cm]

Blue/black: unmodified; Red: xR 44

Combining datasets (Electron spectra + DCA)

This problem is a simultaneous unfolding of displaced vertices and
electron spectra. This involves computing the joint likelihood for each
monte carlo sample and comparing it to data.

N Net
o pCA| DCAY . TT. e*pr), € p
H Pois(n; ;| ) X H wiPois(n, ™y, )
J=1 k=1

(2)

6
Ln|u) = | [ wi
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Where w; = 1/12 and w;, = 1/2.

If the efficiencies of the DCA samples vs. e* pp are unavailable, each
trial 1 can be scaled to match the integral of the DCA distribution.

This removes the dependence on ||ji||2, and only the shape of the DCA
“‘guess” matters.

D,B p — e* p7 and DCA matrices
These matrices represent the probability for a heavy-flavor hadron at a
given pp to decay to an electron at a given pp and/or DCA.

P(Hadronp_ - e*p_) P(Hadron p_ — e* DCA)
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x axis: e* py bin

y axis: Dpy (0-10) and B p7 (10-20). D,B pr both 0-10 GeV/c

Regularization

Due to statistical fluctuations in the data and ill-conditioned transfer
matrices, unbiased unfolding results typically exhibit large variances.
The problem grows with model complexity (i.e. number of free
parameters).

To deal with this, a prior distribution is included that penalizes results
whose ratio to the initial guess has a large total curvature (second
derivative). The regularization strength is an adjustable parameter,
requiring careful study and transparent disclosure.

Unfolding results: examples

The output of the sampling algorithm is a 20-dimensional posterior
probability distribution. Two marginal distributions from the joint
posterior are shown here.
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Unfolding results: summary

The shortest interval containing 68% of the samples is shown. This
Interval is used to summarize the distribution for each hadron pr
dimension, as shown here:

D,B meson p_
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Re-folding the results

A necessary requirement is that the output from the unfolding
calculation, when “refolded” (i.e. multiplied by the decay matrices),
agree closely with the observed data.
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This should be the case for both datasets, and the result should be
self-consistent. This self-consistency is shown below.

Beauty fraction vs. electron p
The red curve is from the re-folded electron p; spectrum, and the blue
curve is from the re-folded DCA distributions.

The black curve is the result of a FONLL calculation [PRC 84, 044905
(2011)].
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Summary
We leave you with the following points:

m Even with no “knowledge” of R 4 4 in the unfolding matrices, the
unfolding algorithm approximately recovers the correct modified
hadron spectrum when given a noisy, modified electron dataset.

m The result is not perfect. Regularization is required to impose some
degree of smoothness on the result. This is a bias introduced by the
experimenter based on prior expectations.

m The agreement of a re-folded result with the input dataset is a
necessary, but not sufficient requirement for an accurate result.

We're doing this with real data too! Keep an eye out for a PHENIX publication.
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