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Linear inverse problems

Continuous case

Inverse problem: obtain model parameters of a physical system, given a
set of observed quantities.

Invert the process that transforms model parameters to measured data.
Solutions don't satisfy Hadamard's three conditions of existence,
uniqueness, and stability required for classification as a well-posed

problem.

Linear inverse problems are modeled by a Fredholm integral equation of
the first kind:

/1 K(s,)f()dt = g(s), 0<s<1 (1)



Riemann-Lebesgue lemma

(in loose terms)

For any “arbitrary” finite kernel, the integrated Fourier components of f
are progressively diminished as their order increases (+ and - portions
increasingly smoothed into cancellation).

The opposite of this damping occurs in computing f from g: the
high-frequency components of f are amplified.

Although mathematically correct, the solution is of little physical use.

Regularization: cure by imposing smoothness requirement on result
(hopefully without biasing it).
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Discrete linear inverse problems

The discrete version of equation 1 is the linear system
Ax=Db (2)
which includes the response matrix A € R™*", the solution vector

x € R", and the measured vector b = b®?t + e ¢ R™.

Three cases for measured (m) and true/solution bin dimensions (n):
- m < n: underdetermined system (not considered here)
- m = n: critically constrained system (unique solution)
- m > n: overdetermined system (least squares problem)

In the latter case, the problem is expressed as

min ||Ax — b|[3 (3)
X
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SVD analysis of the unfolding problem

A powerful tool for linear problems

For any matrix A € R™*" with m > n,
A=UsVT = gy (4)
i=1

U e R™" and V € R"*" are orthogonal matrices whose columns form
an orthonormal basis, and X = diag(oy, ..., 0,) contains the SV
spectrum.
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Singular value spectrum

Example: Gaussian convolution (K(s, t) = K(s — t))
The singular values decay steeply until / = 20, where they drop below o1

X machine precision.
Singular values

25 x 25 Gaussian convolution matrix (o = 1)
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This behavior is typical for ill-posed problems, whose numerical rank (#

nonzero o; values) is ill-determined.
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SVD basis vectors

same example

The left singular vectors u; are essentially Fourier components of A, and
the singular values represent its power spectrum.
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The lower-i components contain reliable information, while the highest
components are noise-dominated.



Condition of the response matrix

large condition number <> strong noise amplification

25 x 25 Gaussian convolution matrix (¢ = 1)

The 2-norm of A is
[[A[l2 = max)|x,=1||Ax||2.

The condition number of A is

cond(A) = ||Al|2[|A7Y|2 = o1/0n.

Guideline: if the matrix condition number is 10",

the accuracy in x is 15 — n digits for double
precision.

35 4 45 5
s (observed)

This seems hopeless, but severely ill-conditioned matrices like this one
(cond(A) ~ 10'7) can still allow reasonable solutions.

Regularization is critical!



Why direct inversion of A fails

Short answer: lll-conditioned A + noise in b

Direct algebraic solution: invert A to solve Ax = b.

Since A= = VZ1UT, the direct (unregularized) solution is
n T .
X:A_lbzzuvi. (5)
o
i=1

What we have in practice! is

n T xact T
L be aci L
x = A" f Ale = Z (u, vi + i ev,') . (6)

. agj agj
i=1

The final term is associated with high frequencies and small singular
values — noise dominates at large /.

1 Assume here the error on A < measurement error.



A test problem

Gaussian smearing
applied to x'¢ = e~
via Monte Carlo
sampling (10*
events).

Simulates

- Poisson
fluctuations in b

- Shape distortion

- Inefficiency
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A test problem

Gaussian smearing
applied to x''¢ = e
via Monte Carlo
sampling (10*
events).

—t

Simulates

- Poisson
fluctuations in b

- Shape distortion

- Inefficiency

Efficiency




SVD analysis

for the Gaussian convolution example

T pexact T
. . b T.e
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But the o; (shown earlier) continue falling steeply.
The noise-dominated i > 6 terms rapidly explode.



Including regularization
The general-form Tikhonov-Phillips problem

Add a term to the least squares problem (eq. 3) that includes a
smoothing matrix L:

A b
mXin{||Ax—b||§~t—)\2 ||Lx||§} or mxin (AL)X_ <0> ) (M)
Examples of L include the n x n identity matrix and the second-order
finite difference operator
1 -2 1
L, = T c R(n72)><n. (8)



The Generalized SVD

A joint decomposition of A and L

The GSVD of A€ R™*" and L € RP*" is

A=UCX™' and L=VSX! (9)
where U € R™*™ V € RP*P and X~ ! € R"™ " are orthogonal matrices,
and?

Ih—p O
C= 0 X,| eR™" and S= (0 Mp) € RP*" (10)
0 0

contain the generalized singular values

Zp = diag(a;), 1>041>0422...04p20
M, = diag(pi), 0<B1<Pa<...3, <1,

2This ordering is reversed from some common conventions.
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Spectral filtering in the GSVD basis

For Tikhonov's problem

Using the GSVD, the regularized solution is
Xreg = XF <'"6P ZOT> UTb (11)

where YT is the Moore-Penrose pseudoinverse of ¥ and F is a diagonal
matrix containing 1's (i = 1...n — p) and the Tikhonov filter factors

i=n—p+1...n (12)

In terms of the column vectors of UT and X,

n—p

Xreg = »_(u] - b)x; + Z FOL (13)

i=1 i=n—p+1
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Analysis of the regularized problem
This time, expanded in the Generalized SVD basis (A = 0.38)

GSVD Components ' | u'l |
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Applying Tikhonov filter factors f suppresses the noise-dominated
coefficients.
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GSVD solution

A = 0.38, shown without uncertainties
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Not too bad, but is this the best parameter choice? How is \ selected?
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Parameter scan
A =0.01,0.02,...,1.0

GSVD solutions

Solution evolves from under-smoothed to over-smoothed.
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Generalized cross-validation

Tries to find X\ such that Ax) predicts b3t as well as possible
Skipping the derivation, Agcy is the minimum of

|Ax — b3

G\ = ————2 (14)
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The L-Curve criterion

Parametric curve of curvature vs. agreement
Smoothing norm ||Lxy||, vs. residual norm ||Axy — b||,.

GSVD L-Curve
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Moving up the vertical axis < less regularization (smaller \).
Moving across the horizontal axis < more regularization (larger \).
Optimal value occurs near kink. Agcy circled for reference.
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More to discuss. ..

out of time

There are many more topics:
- Weighting x to improve regularization (often critical for spectra)
- Error propagation and covariance
- lterative unfolding methods
- Uncertainty scaling (prewhitening)
- Solutions with discontinuities
- Handling boundary conditions
- Dealing with background

If interest, these can be presented in a future meeting.
In the meantime, the algorithms and examples are available:

git clone https://github.com/andrewadare/utils.git
git clone https://github.com/andrewadare/unfolding.git



