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Linear inverse problems
Continuous case

Inverse problem: obtain model parameters of a physical system, given a
set of observed quantities.

Invert the process that transforms model parameters to measured data.

Solutions don’t satisfy Hadamard’s three conditions of existence,
uniqueness, and stability required for classification as a well-posed
problem.

Linear inverse problems are modeled by a Fredholm integral equation of
the first kind: ∫ 1

0

K (s, t)f (t)dt = g(s), 0 ≤ s ≤ 1 (1)
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Riemann-Lebesgue lemma
(in loose terms)

For any “arbitrary” finite kernel, the integrated Fourier components of f
are progressively diminished as their order increases (+ and - portions
increasingly smoothed into cancellation).

The opposite of this damping occurs in computing f from g : the
high-frequency components of f are amplified.

Although mathematically correct, the solution is of little physical use.

Regularization: cure by imposing smoothness requirement on result
(hopefully without biasing it).
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Discrete linear inverse problems

The discrete version of equation 1 is the linear system

Ax = b (2)

which includes the response matrix A ∈ Rm×n, the solution vector
x ∈ Rn, and the measured vector b = bexact + e ∈ Rm.

Three cases for measured (m) and true/solution bin dimensions (n):

· m < n: underdetermined system (not considered here)

· m = n: critically constrained system (unique solution)

· m > n: overdetermined system (least squares problem)

In the latter case, the problem is expressed as

min
x
‖Ax− b‖2

2 (3)

4 / 20



SVD analysis of the unfolding problem
A powerful tool for linear problems

For any matrix A ∈ Rm×n with m ≥ n,

A = UΣV T =
n∑

i=1

σiuiv
T
i . (4)

U ∈ Rm×n and V ∈ Rn×n are orthogonal matrices whose columns form
an orthonormal basis, and Σ = diag(σ1, . . . , σn) contains the SV
spectrum.
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Singular value spectrum
Example: Gaussian convolution (K(s, t) = K(s − t))

The singular values decay steeply until i ≈ 20, where they drop below σ1

× machine precision.
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This behavior is typical for ill-posed problems, whose numerical rank (#
nonzero σi values) is ill-determined.
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SVD basis vectors
same example

The left singular vectors ui are essentially Fourier components of A, and
the singular values represent its power spectrum.
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The lower-i components contain reliable information, while the highest
components are noise-dominated.
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Condition of the response matrix
large condition number ⇔ strong noise amplification
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The 2-norm of A is
||A||2 = max||x||2=1||Ax ||2.

The condition number of A is

cond(A) = ||A||2||A−1||2 = σ1/σn.

Guideline: if the matrix condition number is 10n,
the accuracy in x is 15− n digits for double
precision.

This seems hopeless, but severely ill-conditioned matrices like this one
(cond(A) ∼ 1017) can still allow reasonable solutions.

Regularization is critical!

8 / 20



Why direct inversion of A fails
Short answer: Ill-conditioned A + noise in b

Direct algebraic solution: invert A to solve Ax = b.

Since A−1 = VΣ−1UT , the direct (unregularized) solution is

x = A−1b =
n∑

i=1

uTi · b
σi

vi . (5)

What we have in practice1 is

x = A−1bexact + A−1e =
n∑

i=1

(
uTi · bexact

σi
vi +

uTi · e
σi

vi

)
. (6)

The final term is associated with high frequencies and small singular
values → noise dominates at large i .

1Assume here the error on A� measurement error.
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A test problem

Gaussian smearing
applied to xtrue = e−t

via Monte Carlo
sampling (104

events).

Simulates

- Poisson
fluctuations in b

- Shape distortion

- Inefficiency
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A test problem
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SVD analysis
for the Gaussian convolution example

uTi · b stops falling near i = 6, where
uTi ·b

exact

σi
vi ≈ uTi ·e

σi
vi .
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But the σi (shown earlier) continue falling steeply.
The noise-dominated i > 6 terms rapidly explode.
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Including regularization
The general-form Tikhonov-Phillips problem

Add a term to the least squares problem (eq. 3) that includes a
smoothing matrix L:

min
x

{
‖Ax− b‖2

2 + λ2 ‖Lx‖2
2

}
or min

x

∥∥∥∥( A

λL

)
x−

(
b

0

)∥∥∥∥
2

(7)

Examples of L include the n × n identity matrix and the second-order
finite difference operator

L2 =

1 −2 1
. . .

. . .
. . .

1 −2 1

 ∈ R(n−2)×n. (8)
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The Generalized SVD
A joint decomposition of A and L

The GSVD of A ∈ Rm×n and L ∈ Rp×n is

A = UCX−1 and L = VSX−1 (9)

where U ∈ Rm×m, V ∈ Rp×p, and X−1 ∈ Rn×n are orthogonal matrices,
and2

C =

In−p 0
0 Σp

0 0

 ∈ Rm×n and S =
(
0 Mp

)
∈ Rp×n (10)

contain the generalized singular values

Σp = diag(αi ), 1 ≥ α1 ≥ α2 ≥ . . . αp ≥ 0

Mp = diag(βi ), 0 ≤ β1 ≤ β2 ≤ . . . βp ≤ 1.

2This ordering is reversed from some common conventions.
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Spectral filtering in the GSVD basis
For Tikhonov’s problem

Using the GSVD, the regularized solution is

xreg = XF

(
In−p 0

0 Σ†

)
UTb (11)

where Σ† is the Moore-Penrose pseudoinverse of Σ and F is a diagonal
matrix containing 1’s (i = 1 . . . n − p) and the Tikhonov filter factors

fi =
γ2
i

γ2
i + λ2

, γi =
αi

βi
, i = n − p + 1 . . . n. (12)

In terms of the column vectors of UT and X ,

xreg =

n−p∑
i=1

(uTi · b)xi +
n∑

i=n−p+1

fi
uTi · b
αi

xi (13)
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Analysis of the regularized problem
This time, expanded in the Generalized SVD basis (λ = 0.38)
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Applying Tikhonov filter factors f suppresses the noise-dominated
coefficients.
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GSVD solution
λ = 0.38, shown without uncertainties
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Not too bad, but is this the best parameter choice? How is λ selected?
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Parameter scan
λ = 0.01, 0.02, . . . , 1.0
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Solution evolves from under-smoothed to over-smoothed.
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Generalized cross-validation
Tries to find λ such that Axλ predicts bexact as well as possible

Skipping the derivation, λGCV is the minimum of

G (λ) =
‖Ax− b‖2

2

(m −
∑n

i=1 fi )
2

(14)
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The L-Curve criterion
Parametric curve of curvature vs. agreement

Smoothing norm ‖Lxλ‖2 vs. residual norm ‖Axλ − b‖2.

2
-b||

λ
||Ax

71 72 73 74 75 76 77 78 79

2|| λ
||L

x

0

100

200

300

400

500

600

700

800

GSVD L-CurveGSVD L-Curve

Moving up the vertical axis ⇔ less regularization (smaller λ).
Moving across the horizontal axis ⇔ more regularization (larger λ).
Optimal value occurs near kink. λGCV circled for reference.
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More to discuss. . .
out of time

There are many more topics:

- Weighting x to improve regularization (often critical for spectra)

- Error propagation and covariance

- Iterative unfolding methods

- Uncertainty scaling (prewhitening)

- Solutions with discontinuities

- Handling boundary conditions

- Dealing with background

If interest, these can be presented in a future meeting.
In the meantime, the algorithms and examples are available:

git clone https://github.com/andrewadare/utils.git

git clone https://github.com/andrewadare/unfolding.git
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