Harmonic decomposition of two particle angular correlations in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

Andrew Adare Yale University for the ALICE Collaboration 7th Workshop on Particle Correlations and Femtoscopy September 21, 2011

Based on arXiv:1109.2501 (Submitted 12 Sep 2011)

Harmonics of Big and Little Bangs

Temperature anisotropy from CMB radiation

Power spectra hold a wealth of info from early epochs

The Astrophysical Journal Supplement Series, 192:14 (15pp), 2011 February

Can we similarly make "power spectra" from A+A collisions?

What can be learned?

Same and mixed event pair distributions

 $\Delta \phi = \phi_A - \phi_B \qquad \Delta \eta$

$$\Delta \eta = \eta_A - \eta_B$$

-1.5

Azimuthal correlation function:

$$C(\Delta\phi) \equiv \frac{N_{mixed}^{AB}}{N_{same}^{AB}} \cdot \frac{dN_{same}^{AB}/d\Delta\phi}{dN_{mixed}^{AB}/d\Delta\phi}$$

Pb-Pb at 2.76 TeV

13.5 M events in 0-90% after event selection

Centrality VZERO detectors resolution < 1%

Tracking

TPC points + **ITS** vertex

optimum acceptance + precision for correlations

Event structure and shape evolution

In central and low-p_T "bulk-dominated" long-range correlations

A near side ridge is observed A very broad away side is observed, even doublypeaked for 0-2% central

In high-p_T "jet-dominated" correlations

- The near-side ridge is not visible
- The away-side jet is very strong; sharp like proton-
- proton case

5

Event structure and s

In central and low-p_T "bulk-domin long-range correlations

A near side ridge is observed A very broad away side is observed, ev peaked for 0-2% central

In high-p_T "jet-dominated" long-range correlations

- The near-side ridge is not visible
- The away-side jet is very strong; sharp like protonproton case

Event structure and s

In central and low-p_T "bulk-domin long-range correlations

A near side ridge is observed A very broad away side is observed, ev peaked for 0-2% central

In high-p_T "jet-dominated" long-range correlations

- The near-side ridge is not visible
- The away-side jet is very strong; sharp like protonproton case

Single vs. pair Fourier decomposition

Single-particle anisotropy

(the familiar vn coefficients)

$$\frac{\mathrm{dN}}{\mathrm{d}\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n(p_T) \cos\left(n(\phi - \Psi_n)\right)$$

Pair anisotropy

Similar form, but indep. of Ψ_n

$$\frac{\mathrm{dN}^{\mathrm{pairs}}}{\mathrm{d}\Delta\phi} \propto 1 + \sum_{n=1}^{\infty} 2V_{n\Delta}(p_T^t, p_T^a) \cos\left(n\Delta\phi\right)$$

Extract directly from 2-particle azimuthal correlations!

$$V_{n\Delta} \equiv \langle \cos(n\Delta\phi) \rangle = \sum_{i} C_{i} \cos(n\Delta\phi_{i}) / \sum_{i} C_{i}.$$

1

Single vs. pair Fourier decomposition

Single-particle anisotropy

(the familiar v_n coefficients)

$$\frac{\mathrm{dN}}{\mathrm{d}\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n(p_T) \cos\left(n(\phi - \Psi_n)\right)$$

Pair anisotropy

Similar form, but indep. of Ψ_n

$$\frac{\mathrm{dN}^{\mathrm{pairs}}}{\mathrm{d}\Delta\phi} \propto 1 + \sum_{n=1}^{\infty} 2V_{n\Delta}(p_T^t, p_T^a) \cos\left(n\Delta\phi\right)$$

Extract directly from 2-particle azimuthal correlations!

$$V_{n\Delta} \equiv \langle \cos(n\Delta\phi) \rangle = \sum_{i} C_{i} \cos(n\Delta\phi_{i}) / \sum_{i} C_{i}.$$

Decomposition in bulk region

"Power spectrum" of pair Fourier components $V_{n\Delta}$

For ultra-central collisions, n = 3 dominates.

In bulk-dominated correlations, the n > 5 harmonics are weak.

(But not necessarily zero...work in progress.)

$V_{2\Delta}$ dominates as collisions become less central. Collision geometry, rather than fluctuations, becomes primary effect

Decomposition in bulk region

"Power spectrum" of pair Fourier components $V_{n\Delta}$

For ultra-central collisions, n = 3 dominates.

In bulk-dominated correlations, the n > 5 harmonics are weak.

(But not necessarily zero...work in progress.)

$V_{2\Delta}$ dominates as collisions become less central. Collision geometry, rather than fluctuations, becomes primary effect

Decomposition in bulk region

"Power spectrum" of pair Fourier components $V_{n\Delta}$

For ultra-central collisions, n = 3 dominates.

In bulk-dominated correlations, the n > 5 harmonics are weak.

(But not necessarily zero...work in progress.)

$V_{2\Delta}$ dominates as collisions become less central. Collision geometry, rather than fluctuations, becomes primary effect

Decomposition in jet region

Di-jet Fourier components $V_{n\Delta}$

Very different spectral signature than bulk correlations!

- All odd harmonics < 0, and finite to large n

A. Adare (ALICE)

Aside: Gaussian Fourier transform

Away-side peak is (sort of) Gaussian:

The F.T. of a Gaussian($\mu = \pi$, $\sigma_{\Delta \phi}$) is ±Gaussian($\mu = 0$, $\sigma_n = 1/\sigma_{\Delta \phi}$).

Fit demonstration: when $\mu = \pi$, odd $V_{n\Delta}$ coefficients are negative.

Aside: Gaussian Fourier transform

Away-side peak is (sort of) Gaussian:

The F.T. of a Gaussian($\mu = \pi$, $\sigma_{\Delta \phi}$) is ±Gaussian($\mu = 0$, $\sigma_n = 1/\sigma_{\Delta \phi}$).

Fit demonstration: when $\mu = \pi$, odd $V_{n\Delta}$ coefficients are negative.

Aside: Gaussian Fourier transform

Away-side peak is (sort of) Gaussian:

The F.T. of a Gaussian($\mu = \pi$, $\sigma_{\Delta \phi}$) is ±Gaussian($\mu = 0$, $\sigma_n = 1/\sigma_{\Delta \phi}$).

Fit demonstration: when $\mu = \pi$, odd $V_{n\Delta}$ coefficients are negative.

$\mbox{Trigger } p_{T}{}^t \mbox{ dependence of } V_{n\Delta}$

Similar trends as for vn

Rises with p_T^t to maximum near 3-4 GeV, then declines

Centrality dependence:

 $V_{2\Delta}$ dominates as collisions become less central

$\mbox{Trigger } p_{T}{}^t \mbox{ dependence of } V_{n\Delta}$

Similar trends as for vn

Rises with p_T^t to maximum near 3-4 GeV, then declines

Centrality dependence:

 $V_{2\Delta}$ dominates as collisions become less central

$\mbox{Trigger } p_{T}{}^t \mbox{ dependence of } V_{n\Delta}$

Similar trends as for v_n

Rises with p_T^t to maximum near 3-4 GeV, then declines

Centrality dependence:

 $V_{2\Delta}$ dominates as collisions become less central

The factorization hypothesis

Factorization of two-particle anisotropy

For pairs correlated to one another through a common symmetry plane Ψ_n , their correlation is dictated by bulk anisotropy:

$$\begin{split} V_{n\Delta}(p_T^t, p_T^a) &= \langle \langle e^{in(\phi_a - \phi_t)} \rangle \rangle \\ &= \langle \langle e^{in(\phi_a - \Psi_n)} \rangle \rangle \langle \langle e^{-in(\phi_t - \Psi_n)} \rangle \rangle \\ &= \langle v_n \{2\}(p_T^t) v_n \{2\}(p_T^a) \rangle. \end{split}$$

 $V_{n\Delta}$ would be generated from one $v_n(p_T)$ curve, evaluated at p_T^t and p_T^a .

Factorization expected:

✓ For correlations from collective flow. Flow is global and affects all particles in the event.

X Not for pairs from fragmenting di-jets. Di-jet shapes are "local", not strongly connected to Ψ_n. A. Adare (ALICE)

The factorization hypothesis

Factorization of two-particle anisotropy

For pairs correlated to one another through a common symmetry plane Ψ_n , their correlation is dictated by bulk anisotropy:

$$V_{n\Delta}(p_T^t, p_T^a) = \langle \langle e^{in(\phi_a - \phi_t)} \rangle \rangle$$

= $\langle \langle e^{in(\phi_a - \Psi_n)} \rangle \rangle \langle \langle e^{-in(\phi_t - \Psi_n)} \rangle \rangle$
= $\langle v_n \{2\}(p_T^t) v_n \{2\}(p_T^a) \rangle.$

 $V_{n\Delta}$ would be generated from one $v_n(p_T)$ curve, evaluated at p_T^t and p_T^a .

Factorization expected:

✓ For correlations from collective flow. Flow is global and affects all particles in the event.

X Not for pairs from fragmenting di-jets. Di-jet shapes are "local", not strongly connected to Ψ_n. A. Adare (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \ge v_n(p_T^a)$ product.

- Fit supports factorization at low p_T^a
- \Rightarrow suggests flow correlations.
- Fit deviates from data in jet-dominated high p_T^a region
- ⇒ collective description less appropriate._{A. Adare} (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \ge v_n(p_T^a)$ product.

- Fit supports factorization at low p_T^a
- \Rightarrow suggests flow correlations.
- Fit deviates from data in jet-dominated high p_T^a region
- ⇒ collective description less appropriate._{A. Adare} (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \ge v_n(p_T^a)$ product.

- Fit supports factorization at low p_T^a
- \Rightarrow suggests flow correlations.
- Fit deviates from data in jet-dominated high p_T^a region
- ⇒ collective description less appropriate._{A. Adare} (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \ge v_n(p_T^a)$ product.

- Fit supports factorization at low p_T^a
- \Rightarrow suggests flow correlations.
- Fit deviates from data in jet-dominated high p_T^a region
- ⇒ collective description less appropriate._{A. Adare} (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \ge v_n(p_T^a)$ product.

- Fit supports factorization at low p_T^a
- \Rightarrow suggests flow correlations.
- Fit deviates from data in jet-dominated high p_T^a region
- ⇒ collective description less appropriate._{A. Adare} (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \ge v_n(p_T^a)$ product.

- Fit supports factorization at low p_T^a
- \Rightarrow suggests flow correlations.
- Fit deviates from data in jet-dominated high p_T^a region
- ⇒ collective description less appropriate._{A. Adare} (ALICE)

Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12 p_T^t bins, 12 p_T^a bins; $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$ points.

Fit all simultaneously to find $v_n(p_T)$ curve with best-fit $v_n(p_T^t) \ge v_n(p_T^a)$ product.

- Fit supports factorization at low p_T^a
- \Rightarrow suggests flow correlations.
- Fit deviates from data in jet-dominated high p_T^a region
- ⇒ collective description less appropriate._{A. Adare} (ALICE)

Global fit parameters are vn coefficients

Global fit parameters are vn coefficients

Global fit parameters are vn coefficients

Global fit parameters are vn coefficients

Global fit parameters are vn coefficients

 $2 \le n \le 5$ shown here (n=1 later)

High-precision measure of v_n from 2-particle correlations! Agreement with other methods?

Published ALICE vn{2}

PRL 107 032301 (2011) Scalar-product (SP) method $|\Delta \eta| > 1.0$

A. Adare (ALICE)

A. Adare (ALICE)

A. Adare (ALICE)

$V_{1\Delta}$ behaves exceptionally...

The n=1 harmonic doesn't factorize

Including the near-side peak enhances disagreement.

$V_{1\Delta}$ behaves exceptionally...

The n=1 harmonic doesn't factorize

Including the near-side peak enhances disagreement.

No good global fit over all momenta However, v₁{GF} is qualitatively similar to viscous hydro predictions...under investigation.

Summary

Factorization hypothesis and global fit:

Collective behavior (flow) describes bulk anisotropy (ridge, double-hump)

- No need to invoke Mach cone explanations.
- Global fit coefficients (vn{GF}) consistent with other measurements.
- Another method to measure flow coefficients

Bulk anisotropy factorizes, jet anisotropy does not.

- Bulk correlations related to global symmetries...
- But no such indication for shape of di-jet correlations.

Outlook:

Tackling open questions:

- Higher harmonics?
- Origin of $V_{1\Delta}$? Relation to v_1 ?

Second-year Pb-Pb data taking is just around the corner!

High trigger, low associated p_T

High-p_T triggers from jet fragmentation

Expect anisotropy from pathlength-dependent quenching (PLDQ).

Low-p_T partners from bulk Expect anisotropy from flow

Do correlations factorize for this case?

Yes, but not as cleanly as for low p_T^t , low p_T^a correlations.

High trigger, low associated p_T

High-p_T triggers from jet fragmentation

Expect anisotropy from pathlength-dependent quenching (PLDQ).

Low-p_T partners from bulk Expect anisotropy from flow

Do correlations factorize for this case?

Yes, but not as cleanly as for low p_T^t , low p_T^a correlations.

