Heavy quark diffusion in a hydrodynamically expanding medium A Langevin dynamical calculation

Andrew M. Adare^a Michael P. McCumber^{a,b} Jamie L. Nagle^a

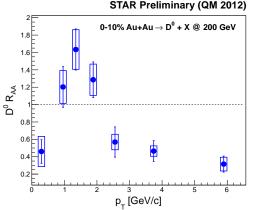
> with thanks to Paul Romatschke^a

^aUniversity of Colorado, Boulder ^bLos Alamos National Laboratory

29th Winter Workshop on Nuclear Dynamics Squaw Valley, CA February 7, 2013

Heavy quarks in the QGP

A well-calibrated probe of the medium

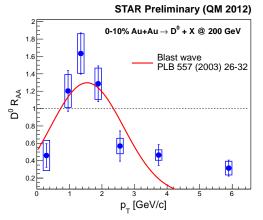

They are distinct

- c, b are conserved quantum numbers
- Identifiable from final-state products
- They are around at the beginning
 - But they thermalize slowly:
 - $au \approx M/T pprox 6 imes$ longer than for light quarks
 - Well-defined initial conditions (hard processes)
- They suffer collisional energy loss
 - c vs b energy loss an important constraint
 - Diffusion
 - Drag

D^0 modification experimentally established Not a weak effect!

Initial naive thinking (large mass \Rightarrow small modification) is unsupported.

STAR D^0 s in Au+Au



- Features in data:
 - Strong low-p_T suppression
 - Large enhancement around 1-2 GeV
 - 2-3× suppression for $p_T > 2 \text{ GeV}$

*D*⁰ modification experimentally established Not a weak effect!

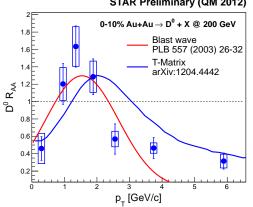
Initial naive thinking (large mass \Rightarrow small modification) is unsupported.

STAR D^0 **s in Au+Au**

 Blast-wave fit (Batsouli, Kelly, Gyulassy, Nagle) describes low-p_T data well

• But with boosted thermal particles only, the high-*p*_T behavior is not matched.

The radial velocity

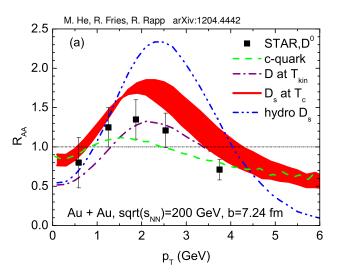

$$\beta_T = \beta_{\max} \frac{r}{R}$$

has a linear boost profile, with uniform initial density.

D^0 modification experimentally established Not a weak effect!

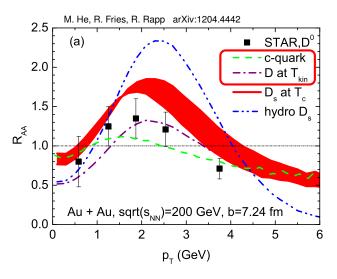
Initial naive thinking (large mass \Rightarrow small modification) is unsupported.

STAR D^0 s in Au+Au



STAR Preliminary (QM 2012)

- T-matrix interactions + coalescence (M. He, R. Fries, R. Rapp) roughly captures R_{AA} features over full p_T range.
- Model includes a non-thermal component.
- How much of this shape comes from hadronization?


Quark vs. hadron R_{AA}

Coalescence is an important effect!

Quark vs. hadron R_{AA}

Coalescence is an important effect!

Compare c-quark and D-meson:

Far stronger low- p_T suppression and intermediate- p_T enhancement in hadronization stage

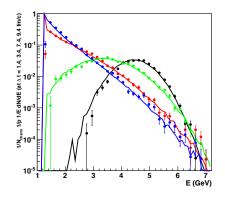
Modeling heavy quark diffusion

Checking further into things

Since heavy quark modification is so informative, modeling in-medium interactions is valuable.

Many groups have produced interesting calculations. We throw our hat into the ring as well.

We used a Langevin MC model embedded in 2+1D viscous hydro by P. Romatschke.


Modeling heavy quark diffusion

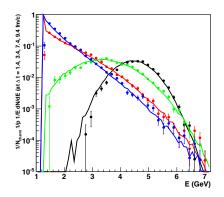
Checking further into things

Since heavy quark modification is so informative, modeling in-medium interactions is valuable.

Many groups have produced interesting calculations. We throw our hat into the ring as well.

We used a Langevin MC model embedded in 2+1D viscous hydro by P. Romatschke. **Check:** for a static uniform medium, p_T spectra match an established calculation.

Phys. Rev. C 84, 064902 (2011)


Modeling heavy quark diffusion

Checking further into things

Since heavy quark modification is so informative, modeling in-medium interactions is valuable.

Many groups have produced interesting calculations. We throw our hat into the ring as well.

We used a Langevin MC model embedded in 2+1D viscous hydro by P. Romatschke. **Check:** for a static uniform medium, p_T spectra match an established calculation.

Phys. Rev. C 84, 064902 (2011)

Now for some details about the calculation...

The Langevin equation:

$$rac{d \mathbf{p}^i(t)}{dt} = -\eta_D^{ij} \mathbf{p}^j(t) + \xi^i(t)$$

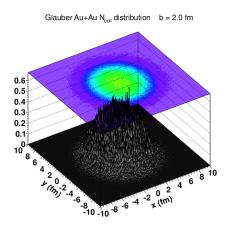
- Viscous drag force η_D^{ij} describes large-scale average motion.
- ξ^i describes stochastic fluctuations about the average motion

$$\langle \xi^{i}(t)\xi^{j}(t')
angle = 4TE\eta^{ij}_{D}\delta(t-t'), \qquad \langle \xi^{i}(t)
angle = 0.$$

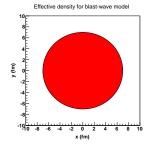
The Langevin equation:

$$rac{d \mathbf{p}^i(t)}{dt} = -\eta_D^{ij} \mathbf{p}^j(t) + \xi^i(t)$$

- Viscous drag force η_D^{ij} describes large-scale average motion.
- ξ^i describes stochastic fluctuations about the average motion


$$\langle \xi^i(t)\xi^j(t')\rangle = 4TE\eta^{ij}_D\delta(t-t'), \qquad \langle \xi^i(t)\rangle = 0.$$

Time discretization

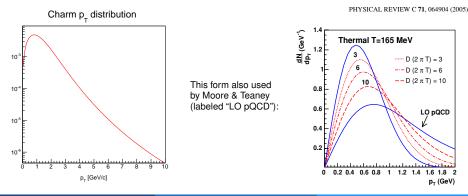

In each step Δt , the quark suffers a normally-distributed random deflection: $\sigma = \sqrt{2T^2/(D\Delta t)}$, where *D* is the diffusion parameter.

One parameter controls essential physics (scattering, drag, boosts)

Initial quark positions distributed according to MC Glauber N_{coll} distribution

Contrast with linear boost profile of blast-wave:

Many particles at large radii \Rightarrow high sensitivity to late-stage expansion


Langevin + Hydro inputs

Quark momentum distributions

Charm quark momentum distributions are given this shape:

$$rac{1}{
ho_T}rac{dn}{d
ho_T} \propto rac{1}{(
ho_T^2+\Lambda^2)^lpha}$$

where $\alpha = 3.9, \Lambda = 2.1$, following Cao, Qin, & Bass (arXiv:1205.2396v1)

A. Adare (CU Boulder)

Langevin MC simulation

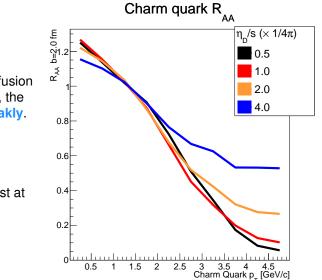
8 cc pairs shown

Langevin MC simulation

D parameter corresponding to $\eta/s = 1/4\pi$

R_{AA}: time dependence

 R_{AA} for $\eta_{\rm p}/s = 1/4\pi$: Time dependence 1 fm/c (start) R_{AuAu} b=2.0 fm .5 9. 2 fm/c3 fm/c 7 fm/c 13 fm/c (end) 1.2 0.8 0.6 0.4 0.2 0.5 2 2.5 3 3.5 1.5 4 4.5 Charm Quark p_ [GeV/c]


Increasing high- p_T suppression with time...

but $R_{AA} < 1$.

Late hydro push (t > 7 fm/c) decreases low- p_T contribution, but not enough to make $R_{AA} < 1$.

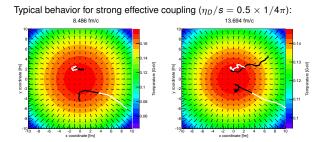
R_{AA} : varying the effective coupling

Smaller $\eta/s \Leftrightarrow$ larger diffusion

Even after varying the diffusion by an order of magnitude, the low- $p_T R_{AA}$ changes weakly.

 $R_{AA} > 1$, no matter the *D* value.

Cancellation over time:

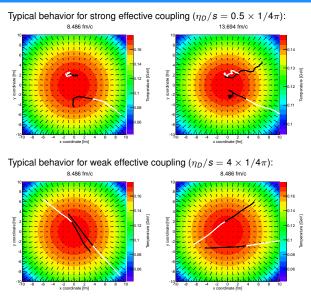

Drag at early times + boost at late times

Azimuthal $q\bar{q}$ correlations

Seeking a more sensitive measure of early-time dynamics

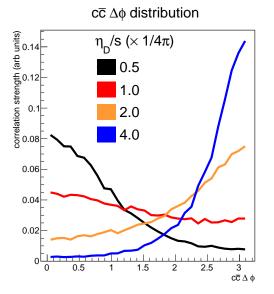
Initial $q\bar{q}$ pairs given equal and opposite p_T

Strong effective coupling (small *D*): expect small-angle correlations from late-stage boosts


Azimuthal $q\bar{q}$ correlations

Seeking a more sensitive measure of early-time dynamics

Initial $q\bar{q}$ pairs given equal and opposite p_T


Strong effective coupling (small *D*): expect small-angle correlations from late-stage boosts

Large *D*: back-to-back correlation is preserved

How does $\Delta \phi$ depend on effective coupling?

 $\Delta \phi$ distribution for $\rho_T > 1$ GeV/c

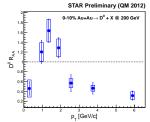
Strong coupling (small *D*) enhances same-side correlations

Weak coupling (large *D*) corresponds to less deflection, preserving back-to-back production.

R_{AA} and $\Delta \phi$ vs diffusion strength

Comparison of "observables"

 R_{AA} is fairly insensitive to varying D near expected values. Charm quark R $c\overline{c} \Delta \phi$ distribution $\eta_{\rm p}/{\rm s}~(\times 1/4\pi)$ R_{AA} b=<u>3</u>.0 fm correlation strength (arb units) 80.0 80.0 $\eta_{\rm D}/s$ (× 1/4 π) 0.5 0.5 1.0 2.0 1.0 4.0 2.0 0.8 4.0 0.6 0.06 0.4 0.04 0.2 0.02 0.5 3 3.5 4 4.5 Charm Quark p, [GeV/c] 2.5 3 1.5 cī⊂∆ φ


But the $c\bar{c}$ correlation function changes dramatically from same-side \rightarrow opposite-side dominance.

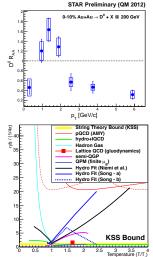
Understanding the shape of R_{AA}

Especially, low- p_T suppression

Despite large range of coupling parameters tried, we could not get $R_{AA} < 1$ below $\approx 1 \text{ GeV}/c$.

- Perhaps the low p_T effect is all coalescence?
- Or perhaps there is something to make the physics for *t* < 7 fm/*c* weaker, while preserving the strong coupling for *t* > 7 fm/*c*.

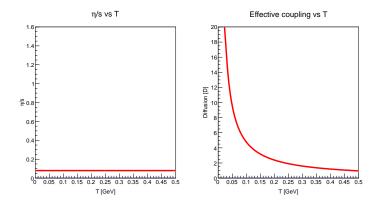
Understanding the shape of R_{AA}


Especially, low- p_T suppression

Despite large range of coupling parameters tried, we could not get $R_{AA} < 1$ below $\approx 1 \text{ GeV}/c$.

- Perhaps the low p_T effect is all coalescence?
- Or perhaps there is something to make the physics for *t* < 7 fm/*c* weaker, while preserving the strong coupling for *t* > 7 fm/*c*.

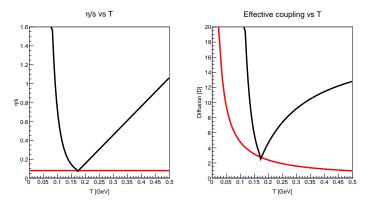
To check this, we investigate a temperature-dependent coupling.


Figure from sPHENIX proposal arXiv:1207.6378

Temperature-dependent η/s

and the corresponding effective coupling D(T)

For constant $\eta/s = 1/4\pi$, the diffusion parameter is $D = 3/2\pi T$.

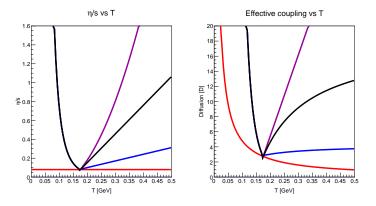


Temperature-dependent η/s

and the corresponding effective coupling D(T)

For constant $\eta/s = 1/4\pi$, the diffusion parameter is $D = 3/2\pi T$.

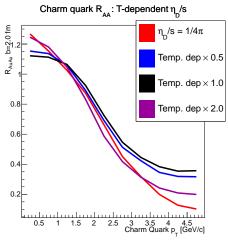
Based on many models, η/s grows sharply away from $T_c \Rightarrow D$ much larger at high T / early time.

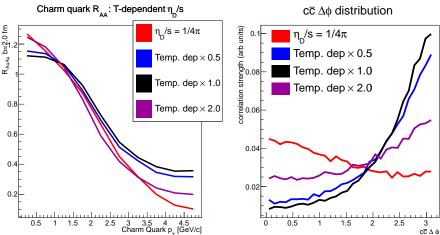


Temperature-dependent η/s

and the corresponding effective coupling D(T)

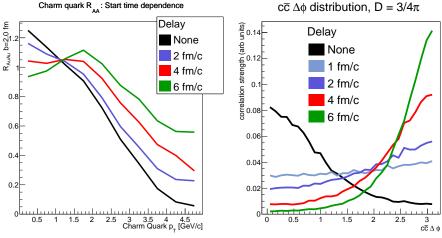
For constant $\eta/s = 1/4\pi$, the diffusion parameter is $D = 3/2\pi T$.


Based on many models, η/s grows sharply away from $T_c \Rightarrow D$ much larger at high T / early time.


We also tried doubling and halving the high-T dependence. \Rightarrow Result:

A. Adare (CU Boulder)

R_{AA} is fairly insensitive to the temperature dependence.


 R_{AA} is fairly insensitive to the temperature dependence.

On the other hand, the pair correlation shows a strong dependence!

What if charm quarks don't interact at all initially?

Immediate diffusion: strong initial drag, then pairs are collinearized in late-stage boost

Very late diffusion: back-to-back enhancement as for large η/s case.

A. Adare (CU Boulder)

- Scattering + viscous drag → high-p_T suppression
- Also causes low- p_T enhancement

- Scattering + viscous drag → high-p_T suppression
- Also causes low- p_T enhancement

But: Very low- p_T suppression doesn't come about at the partonic level

- Whatever we tried, we could not get $R_{AA} < 1$
- With realistic initial geometry, late-stage boosts are insufficient
- What really does it is coalescence

- Scattering + viscous drag → high-p_T suppression
- Also causes low- p_T enhancement

But: Very low- p_T suppression doesn't come about at the partonic level

- Whatever we tried, we could not get $R_{AA} < 1$
- With realistic initial geometry, late-stage boosts are insufficient
- What really does it is coalescence

Angular $c\bar{c}$ correlations are sensitive where R_{AA} is not, but of course we can't measure them directly We experimentalists need to think hard about how to access this physics.

- Scattering + viscous drag → high-p_T suppression
- Also causes low- p_T enhancement

But: Very low- p_T suppression doesn't come about at the partonic level

- Whatever we tried, we could not get $R_{AA} < 1$
- With realistic initial geometry, late-stage boosts are insufficient
- What really does it is coalescence

Angular $c\bar{c}$ correlations are sensitive where R_{AA} is not, but of course we can't measure them directly We experimentalists need to think hard about how to access this physics.

Thanks