Heavy quark diffusion in a hydrodynamically expanding medium A Langevin dynamical calculation

Andrew M. Adare*^a* Michael P. McCumber*^a*,*^b* Jamie L. Nagle*^a*

> with thanks to Paul Romatschke*^a*

*^a*University of Colorado, Boulder *b* Los Alamos National Laboratory

29th Winter Workshop on Nuclear Dynamics Squaw Valley, CA February 7, 2013

Heavy quarks in the QGP

A well-calibrated probe of the medium

• They are distinct

- **-** *c*, *b* are conserved quantum numbers
- **-** Identifiable from final-state products
- They are around at the beginning
	- **-** But they thermalize slowly:
		- $\tau \approx M/T \approx 6 \times$ longer than for light quarks
	- **-** Well-defined initial conditions (hard processes)
- They suffer collisional energy loss
	- **-** *c* vs *b* energy loss an important constraint
	- **-** Diffusion
	- **-** Drag

D ⁰ **modification experimentally established Not a weak effect!**

Initial naive thinking (large mass \Rightarrow small modification) is unsupported.

STAR *D* ⁰**s in Au+Au**

- Features in data:
	- Strong low- p_T suppression
	- **-** Large enhancement around 1-2 GeV
	- **-** 2-3× suppression for $p_T > 2$ GeV

D ⁰ **modification experimentally established Not a weak effect!**

Initial naive thinking (large mass \Rightarrow small modification) is unsupported.

STAR *D* ⁰**s in Au+Au**

- Blast-wave fit (Batsouli, Kelly, Gyulassy, Nagle) describes low-*p^T* data well
- **But** with boosted thermal particles only, the high-*p^T* behavior is not matched.

The radial velocity

$$
\beta_T = \beta_{\text{max}} \frac{r}{R}
$$

has a linear boost profile, with uniform initial density.

D ⁰ **modification experimentally established Not a weak effect!**

Initial naive thinking (large mass \Rightarrow small modification) is unsupported.

STAR *D* ⁰**s in Au+Au**

- T-matrix interactions + coalescence (M. He, R. Fries, R. Rapp) roughly captures R_{AA} features over full p_{T} range.
- Model includes a non-thermal component.
- How much of this shape comes from hadronization?

Quark vs. hadron *RAA*

Coalescence is an important effect!

Quark vs. hadron *RAA*

Coalescence is an important effect!

Compare c-quark and D-meson:

Far stronger low-*p^T* suppression and intermediate- p_T enhancement in hadronization stage **Checking further into things**

Since heavy quark modification is so informative, modeling in-medium interactions is valuable.

Many groups have produced interesting calculations. We throw our hat into the ring as well.

We used a Langevin MC model embedded in 2+1D viscous hydro by P. Romatschke.

Modeling heavy quark diffusion

Checking further into things

Since heavy quark modification is so informative, modeling in-medium interactions is valuable.

Many groups have produced interesting calculations. We throw our hat into the ring as well.

We used a Langevin MC model embedded in 2+1D viscous hydro by P. Romatschke.

Check: for a static uniform medium, p_T spectra match an established calculation.

Phys. Rev. C 84, 064902 (2011)

Modeling heavy quark diffusion

Checking further into things

Since heavy quark modification is so informative, modeling in-medium interactions is valuable.

Many groups have produced interesting calculations. We throw our hat into the ring as well.

We used a Langevin MC model embedded in 2+1D viscous hydro by P. Romatschke.

Check: for a static uniform medium, *p^T* spectra match an established calculation.

Phys. Rev. C 84, 064902 (2011)

Now for some details about the calculation.

The **Langevin equation:**

$$
\frac{d\mathbf{p}^i(t)}{dt} = -\eta_D^j \mathbf{p}^j(t) + \xi^i(t)
$$

- Viscous drag force $\eta^{\hat{\eta}}_L$ *D* describes large-scale average motion.
- ξ *ⁱ* describes stochastic fluctuations about the average motion

$$
\langle \xi^i(t)\xi^j(t')\rangle = 4\mathcal{T}E\eta_D^{ij}\delta(t-t'), \qquad \langle \xi^i(t)\rangle = 0.
$$

The **Langevin equation:**

$$
\frac{d\mathbf{p}^i(t)}{dt} = -\eta_D^j \mathbf{p}^j(t) + \xi^i(t)
$$

- Viscous drag force $\eta^{\hat{\eta}}_L$ *D* describes large-scale average motion.
- ξ *ⁱ* describes stochastic fluctuations about the average motion

$$
\langle \xi^i(t) \xi^j(t') \rangle = 4 \mathcal{T} E \eta_D^{ij} \delta(t-t'), \qquad \langle \xi^i(t) \rangle = 0.
$$

Time discretization

In each step ∆*t*, the quark suffers a normally-distributed random deflection: $\sigma = \sqrt{2\,T^2/(D\Delta t)}$, where *D* is the diffusion parameter.

One parameter controls essential physics (scattering, drag, boosts)

Initial quark positions distributed according to MC Glauber *Ncoll* distribution

Contrast with linear boost profile of blast-wave:

Effective density for blast-wave model

Many particles at large radii \Rightarrow high sensitivity to late-stage expansion

Langevin + Hydro inputs

Quark momentum distributions

Charm quark momentum distributions are given this shape:

$$
\frac{1}{p_T}\frac{dn}{dp_T}\propto \frac{1}{(p_T^2+\Lambda^2)^\alpha}
$$

where $\alpha = 3.9, \Lambda = 2.1$, following Cao, Qin, & Bass (arXiv:1205.2396v1)

Langevin MC simulation 8 *cc*¯ **pairs shown**

D **parameter corresponding to** $n/s = 1/4\pi$

*RAA***: time dependence subtitle**

0.5 1 1.5 2 2.5 3 3.5 4 4.5
Charm Quark p_T [GeV/c] $\begin{bmatrix} 5 & 1 & 6 \\ 0 & 1 & 6 \\ 0 & 1 & 6 \end{bmatrix}$ 4.4
مارچ
A 0.2 0.4 0.6 0.8 1⊢ 1.2 1.4 1.6 R_{AA} for $\eta_{\sf p}^{\;}/\!$ s = 1/4π: Time dependence 1 fm/c (start) 2 fm/c 3 fm/c 7 fm/c 13 fm/c (end)

Increasing high- p_T suppression with time...

but R_{AA} < 1.

Late hydro push $(t > 7$ fm/*c*) decreases low- p_T contribution, but not enough to make R_{AA} < 1.

*RAA***: varying the effective coupling**

Smaller η/*s* ⇔ **larger diffusion**

Azimuthal *qq*¯ **correlations**

Seeking a more sensitive measure of early-time dynamics

Initial *qq*¯ pairs given equal and opposite *p^T*

Strong effective coupling (small *D*): expect small-angle correlations from late-stage boosts

Azimuthal *qq*¯ **correlations**

Seeking a more sensitive measure of early-time dynamics

Initial *qq*¯ pairs given equal and opposite *p^T*

Strong effective coupling (small *D*): expect small-angle correlations from late-stage boosts

Large *D*: back-to-back correlation is preserved

How does ∆φ **depend on effective coupling?** ∆φ **distribution for** *p^T* > 1 **GeV/***c*

Strong coupling (small *D*) enhances same-side correlations

Weak coupling (large *D*) corresponds to less deflection, preserving back-to-back production.

RAA **and** ∆φ **vs diffusion strength**

Comparison of "observables"

RAA is fairly insensitive to varying *D* near expected values.

But the $c\bar{c}$ correlation function changes dramatically from same-side \rightarrow opposite-side dominance.

Understanding the shape of *RAA*

Especially, low-*p^T* **suppression**

Despite large range of coupling parameters tried, we could not get *RAA* < 1 below \approx 1 GeV/*c*.

- Perhaps the low p_T effect is all coalescence?
- Or perhaps there is something to make the physics for $t < 7$ fm/c weaker, while preserving the strong coupling for *t* > 7 fm/*c*.

Understanding the shape of *RAA*

Especially, low-*p^T* **suppression**

Despite large range of coupling parameters tried, we could not get *RAA* < 1 below \approx 1 GeV/*c*.

- Perhaps the low p_T effect is all coalescence?
- Or perhaps there is something to make the physics for $t < 7$ fm/c weaker, while preserving the strong coupling for *t* > 7 fm/*c*.

To check this, we investigate a temperature-dependent coupling. Figure from sPHENIX proposal arXiv:1207.6378

Temperature-dependent η/*s*

and the corresponding effective coupling D(T)

For constant $\eta/s = 1/4\pi$, the diffusion parameter is $D = 3/2\pi T$.

Temperature-dependent η/*s*

and the corresponding effective coupling D(T)

For constant $\eta/s = 1/4\pi$, the diffusion parameter is $D = 3/2\pi T$.

Based on many models, η/*s* grows sharply away from *T^c* \Rightarrow *D* much larger at high T / early time.

Temperature-dependent η/*s*

and the corresponding effective coupling D(T)

For constant $\eta/s = 1/4\pi$, the diffusion parameter is $D = 3/2\pi T$.

Based on many models, η/*s* grows sharply away from *T^c* \Rightarrow *D* much larger at high T / early time.

We also tried doubling and halving the high-T dependence. \Rightarrow Result:

RAA is fairly insensitive to the temperature dependence.

RAA is fairly insensitive to the temperature dependence.

On the other hand, the pair correlation shows a strong dependence!

What if charm quarks don't interact at all initially?

Immediate diffusion: strong initial drag, then pairs are collinearized in late-stage boost

Very late diffusion: back-to-back enhancement as for large η/*s* case.

- Scattering + viscous drag \rightarrow high- p_T suppression
- Also causes low- p_T enhancement

- Scattering + viscous drag \rightarrow high- p_T suppression
- Also causes low- p_T enhancement

But: Very low-*p^T* suppression doesn't come about at the partonic level

- Whatever we tried, we could not get *RAA* < 1
- With realistic initial geometry, late-stage boosts are insufficient
- What really does it is coalescence

- Scattering + viscous drag \rightarrow high- p_T suppression
- Also causes low- p_T enhancement

But: Very low-*p^T* suppression doesn't come about at the partonic level

- Whatever we tried, we could not get *RAA* < 1
- With realistic initial geometry, late-stage boosts are insufficient
- What really does it is coalescence

Angular *cc*¯ **correlations** are sensitive where *RAA* is not, but of course we can't measure them directly We experimentalists need to think hard about how to access this physics.

- Scattering + viscous drag \rightarrow high- p_T suppression
- Also causes low- p_T enhancement

But: Very low-*p^T* suppression doesn't come about at the partonic level

- Whatever we tried, we could not get *RAA* < 1
- With realistic initial geometry, late-stage boosts are insufficient
- What really does it is coalescence

Angular *cc*¯ **correlations** are sensitive where *RAA* is not, but of course we can't measure them directly We experimentalists need to think hard about how to access this physics.

Thanks