# Hydrodynamic flow results from the Large Hadron Collider:

### The latest and greatest



### Quark-gluon plasma

#### **THE QGP:** a partonic superfluid

QCD deconfinement: hadronic → partonic phase as T > 150-170 MeV



#### "The Frontiers of Science: A Long Range Plan"

A. Adare

http://science.energy.gov/np/nsac/

### Quark-gluon plasma

#### **THE QGP:** a partonic superfluid

QCD deconfinement: hadronic → partonic phase as T > 150-170 MeV



### 10+ years of heavy ions at RHIC

#### Support lattice predictions Suggest fluidlike behavior

"The Frontiers of Science: A Long Range Plan" http://science.energy.gov/np/nsac/

A. Adare

Monday, April 2, 2012

### Hydrodynamics in nuclear collisions

#### Anisotropic flow of exploding fireball

Initial spatial eccentricity  $\Rightarrow$  final momentum eccentricity



Anisotropic pressure gradients drive particles in-plane

Similar "flow" also observed in other systems

### Hydrodynamics in nuclear collisions



A. Adare

### **PbPb** at the LHC



#### **The November revolution**

**November 2009** First p-p collisions, 900 GeV

#### November 2010

First Pb-Pb collisions, 2.76 TeV  $L_{PbPb}$  reached 2 x 10<sup>25</sup> cm<sup>-2</sup> s<sup>-1</sup> (Pb-Pb Design luminosity = 10<sup>27</sup>)

#### November 2011

20x increase over 2010 ∫Ldt

CMS matched their 2010 data volume in 1 day!



### The LHC experiments



### The LHC experiments



### The LHC experiments



A. Adare

### Measuring anisotropic flow (I)

#### Parametrize azimuthal particle density

Quantify using n<sup>th</sup> Fourier coefficient v<sub>n</sub>

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi p_T} \frac{d^2N}{dp_T dy} \left[ 1 + 2\sum_{n=1}^{\infty} v_n \cos n(\phi - \Psi_n^{RP}) \right]$$
$$v_n^{\text{ideal}} = \langle \cos n(\phi - \Psi_n^{RP}) \rangle$$



New J. Phys. 13 (2011) 055008

### Measuring anisotropic flow (I)

#### Parametrize azimuthal particle density

Quantify using n<sup>th</sup> Fourier coefficient v<sub>n</sub>

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi p_T} \frac{d^2N}{dp_T dy} \left[ 1 + 2\sum_{n=1}^{\infty} v_n \cos n(\phi - \Psi_n^{RP}) \right]$$
$$v_n^{\text{ideal}} = \langle \cos n(\phi - \Psi_n^{RP}) \rangle$$



New J. Phys. **13** (2011) 055008

8

#### $\Psi^{RP}$ is the <u>ideal</u> reaction plane.

Fluctuations: symmetry axes rotated from collision coordinates.

The n<sup>th</sup>-order event plane (of participants) is measured:

$$\Psi_n^{EP} = \frac{1}{n} \tan^{-1} \frac{\sum_{i} w_i \sin n\phi_i}{\sum_{i} w_i \cos n\phi_i} \qquad \qquad v_n \{EP\} = \frac{v_n^{obs} \{EP\}}{\text{resolution}} = \frac{\langle \cos n(\phi - \Psi_n^{EP}) \rangle}{C \times \sqrt{\langle \cos n(\Psi_n^a - \Psi_n^b) \rangle}}$$
Event plane method

### Measuring anisotropic flow (II)

#### **Multi-particle cumulants**

No event plane measurement required!

2-particle and 4-particle cumulants:

 $c_n\{2\} \equiv \langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle$  $c_n\{4\} \equiv \langle \langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle \rangle - 2 \langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle^2$ 

Borghini, Dihn and Ollitrault, PRC 64, 054901 (2001) Bilandzic, Snellings and Voloshin, PRC 83, 044913 (2011) 9

### Measuring anisotropic flow (II)

9

#### **Multi-particle cumulants**

No event plane measurement required!

2-particle and 4-particle cumulants:

 $c_n\{2\} \equiv \langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle$  $c_n\{4\} \equiv \langle \langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle \rangle - 2 \langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle^2$ 

Borghini, Dihn and Ollitrault, PRC 64, 054901 (2001) Bilandzic, Snellings and Voloshin, PRC 83, 044913 (2011)

#### **Different sensitivities to fluctuations and nonflow:**

 $v_n^2\{2\} = \bar{v}_n^2 + \sigma_v^2 + \delta$ 

$$v_n^2\{4\} = \bar{v}_n^2 - \sigma_v^2$$

#### useful!

### **Measuring anisotropic flow (II)**

2

#### **Multi-particle cumulants**

No event plane measurement required!

2-particle and 4-particle cumulants:

 $c_n\{2\} \equiv \langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle$  $c_n\{4\} \equiv \langle \langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle \rangle - 2 \langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle^2$ 

Borghini, Dihn and Ollitrault, PRC 64, 054901 (2001) Bilandzic, Snellings and Voloshin, PRC 83, 044913 (2011)

#### **Different sensitivities to** fluctuations and nonflow:

$$v_n^2\{2\} = \bar{v}_n^2 + \sigma_v^2 + \delta$$

$$v_n^2\{4\} = \bar{v}_n^2 - \sigma_v^2$$

useful!



### Measuring anisotropic flow (III)

#### Extract harmonics from 2-particle correlation functions

 $\Delta\eta$  gap excludes (0, 0) peak  $\rightarrow$  suppresses nonflow

Harmonic amplitude  $\equiv$  V<sub>n $\Delta$ </sub> (ALICE, CMS) a.k.a. v<sub>n,n</sub> (ATLAS)



### v<sub>2</sub> @ LHC and predecessors

#### v<sub>2</sub> vs. collision energy for 20-30% most central collisions Hydro behavior follows extrapolated RHIC trend



### v<sub>2</sub> @ LHC and predecessors

#### v<sub>2</sub> vs. collision energy for 20-30% most central collisions Hydro behavior follows extrapolated RHIC trend



Monday, April 2, 2012

### v<sub>2</sub> vs. centrality

### ALICE v<sub>2</sub>{2} and v<sub>2</sub>{4}

2< ALICE Preliminary, Pb-Pb events at  $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ Sharp rise from central to mid-central collisions 0.1 reflects increasing eccentricity , o o o o **Declines in most peripheral** 0.05 events v<sub>2</sub> (charged hadrons) weaker pressure from smaller  $v_{2}{2} (|\Delta \eta| > 0)$  $v_{2}{2} (|\Delta \eta| > 1)$ system v<sub>2</sub>{4} v<sub>2</sub>{6} V<sub>2</sub>{8} 0 20 50 30 40 60 70 80 10  $\mathbf{0}$ centrality percentile Large difference between 2- and 4-particle cumulants **Quantifies fluctuations!** What can be learned from this?

### Fluctuations and initial-state models

#### $((v_2^{2}^{2} - v_2^{2}^{2})/2)^{\frac{1}{2}}$ $(0^{0}^{0})^{\frac{1}{2}}$ ALICE Preliminary, Pb-Pb events at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ **Flow fluctuations:** ALICE • $\frac{v_n^2 \overline{\{2\} - v_n^2 \{4\}}}{2} \simeq \sigma_{v_n}^2$ ...... 0.02 15 25 35 5 10 20 30 40 45 0 5 centrality percentile

13

### Fluctuations and initial-state models

**Flow fluctuations:** 

$$\sqrt{\frac{v_n^2\{2\} - v_n^2\{4\}}{2}} \simeq \sigma_{v_n}^2$$

Normalized by  $v_2$  or  $\varepsilon_2$ :

$$\sqrt{\frac{v_n^2\{2\} - v_n^2\{4\}}{v_n^2\{2\} + v_n^2\{4\}}} \simeq \frac{\sigma_{v_n}^2}{\bar{v}_n} \text{ or } \frac{\sigma_{\epsilon_n}^2}{\bar{\epsilon}_n}$$

#### Much ongoing theory work on initial state See talk by H. Petersen today



## v<sub>2</sub> at RHIC and HC: ALICE and STAR

14

### ALICE data (colored) matches RHIC within 5%



### v<sub>2</sub> at RHIC and LHC: CMS and PHENIX

#### CMS v<sub>2</sub> slightly higher than PHENIX in midcentral collisions But consistent within 15%

CMS: HIN-10-002-PAS PHENIX: PRL **105** (2010) 062301



A. Adare

< 2

### Differential v<sub>2</sub>: pions, kaons, protons

#### Significant mass dependence

Expected: radial flow gives all species similar  $\beta$ , thus different  $p_T$ 



Need hadronic rescattering to match antiprotons in central data (UrQMD/VISHNU, arXiv:1108.5323v1)

### Getting even heavier: multistrange v<sub>2</sub>

#### Mass separation continues

#### viscous hydro still gives approximate description



Hydro not expected to match data above 3-4 GeV.

What is  $v_2$  at high  $p_T$ ?





What is  $v_2$  at high  $p_T$ ?



#### At low p<sub>T</sub>

Pressure-driven anisotropic expansion → more particles emitted in direction of largest pressure gradients

#### At high p<sub>T</sub>

Pathlength-dependent energy loss
→ more particles emitted in direction of shortest path

Betz, Gyulassy, Torrieri: PRC 84 (2011) 024913





### v<sub>2</sub> at high p<sub>T</sub>

#### v<sub>2</sub> falls steeply from 4 to 10 GeV/c

Flow anisotropy at low  $p_T \rightarrow$  anisotropic quenching at high  $p_T$  RHIC and LHC agree



ATLAS: Phys Lett B 707 (2012) 330

### V<sub>2</sub> at really high p<sub>T</sub> (!)

#### Steep drop from 4-10 GeV; gradually vanishes as $p_T \rightarrow 60$ GeV/c Energy loss becomes isotropic? Surface or "punch-through" bias?

CMS: HIN-10-002-PAS



### V<sub>2</sub> at really high p<sub>T</sub> (!)

#### Steep drop from 4-10 GeV; gradually vanishes as $p_T \rightarrow 60$ GeV/c Energy loss becomes isotropic? Surface or "punch-through" bias?



CMS: HIN-10-002-PAS

### v<sub>2</sub> vs. system size at different p<sub>T</sub>



Low to intermediate  $p_T$  ( < 4 GeV/c) from CMS

#### v<sub>2</sub> reflects collision geometry & system size Higher p<sub>T</sub>: N<sub>part</sub> dependence weakens

A. Adare

## Pseudorapidity dependence of vn

#### There is (almost) none!

**Precise ATLAS v**<sub>n</sub>{**EP**} measurements up to n=6

For all harmonics (n=1 excepted), flow anisotropy is almost uniform for  $|\eta| < 2.5$ 

Slight decline with  $|\eta|$  appears in most peripheral collisions



Hydrodynamic flow is a long-range effect

A. dale

22

### **Pseudorapidity dependence of v**<sub>n</sub>

A. Adare

#### There is (almost) none!

Precise ATLAS v<sub>n</sub>{EP} measurements up to n=6

For all harmonics (n=1 excepted), flow anisotropy is almost uniform for  $|\eta| < 2.5$ 

Slight decline with |η| appears in most peripheral collisions

Hydrodynamic flow is a long-range effect



## $p_T^0$ dependence of $v_2 - v_6$



### **pt dependence of v**<sub>2</sub> - v<sub>6</sub>



 $v_2-v_6$  have similar trends with  ${}^6p_T$ Flow +  ${}^6initial$  fluctuations < 3-4 GeV High p<sub>T</sub> anisotropic quenching  ${}^{y[fm]}$ 

n=2 strongly centrality-dependent Reflects collision geometry

n=3..6 weakly centrality-dependent "lumpy" initial state

#### v<sub>n</sub> gets smaller as n increases Damping: the key to measuring viscosity?



### ATLAS vn vs centrality



### "Power spectra" from correlations



At higher pt Completely different pattern: harmonics reflect the recoil jet

A. Adare

### "Power spectra" from correlations



25

### Factorization of 2-particle anisotropy

#### 1-particle and 2-particle anisotropy:

For any single  $p_T^{trig}$ ,  $p_T^{assoc}$  combination,

$$\frac{dN^{\text{pairs}}}{d\Delta\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n (p_T^t) v_n (p_T^a) \cos(n\Delta\phi)$$
$$V_{n\Delta}(p_T^{\text{trig}}, p_T^{\text{assoc}}) = v_n (p_T^{\text{trig}}) \times v_n (p_T^{\text{assoc}})$$

e.g. for fixed- $p_T$  correlations ( $p_T^{trig} = p_T^{assoc}$ ),

$$v_n = \sqrt{V_{n\Delta}}$$

### **Factorization of 2-particle anisotropy**

#### **1-particle and 2-particle anisotropy:**

For any single  $p_T^{trig}$ ,  $p_T^{assoc}$  combination,

$$\frac{dN^{\text{pairs}}}{d\Delta\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n (p_T^t) v_n (p_T^a) \cos(n\Delta\phi).$$

$$Charged \text{ Particle } v_2(p_T) \text{ at high } p_T$$

$$V_{n\Delta}(p_T^{\text{trig}}, p_T^{\text{assoc}}) = v_n(p_T^{\text{trig}}) \times v_n(p_T^{\text{assoc}})$$

e.g. for fixed- $p_T$  correlations ( $p_T^{trig} = p_T^{assoc}$ ),

$$v_n = \sqrt{V_{n\Delta}}$$

#### Go further:

check for simultaneous description of all  $(p_T^{trig} \ge p_T^{assoc})$  combinations Can  $V_{n\Delta}$  be generated from one  $v_n(p_T)$  curve?



CMS Preliminary 30-40%

#### Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12  $p_T^t$  bins, 12  $p_T^a$  bins;  $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$  points.

Fit all simultaneously to find  $v_n(p_T)$  curve with best-fit  $v_n(p_T^t) \ge v_n(p_T^a)$  product.

27



A. Adare

- Fit supports factorization at low  $p_T^a$
- $\Rightarrow$  suggests flow correlations.
- Fit deviates from data in jet-dominated high  $\ensuremath{p_{T}}\xspace^a$  region
- $\Rightarrow$  global description less appropriate.

#### Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12  $p_T^t$  bins, 12  $p_T^a$  bins;  $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$  points.

Fit all simultaneously to find  $v_n(p_T)$  curve with best-fit  $v_n(p_T^t) \ge v_n(p_T^a)$  product.

27



A. Adare

- Fit supports factorization at low  $p_T^a$
- $\Rightarrow$  suggests flow correlations.
- Fit deviates from data in jet-dominated high  $p_T^a$  region
- $\Rightarrow$  global description less appropriate.

#### Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12  $p_T^t$  bins, 12  $p_T^a$  bins;  $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$  points.

Fit all simultaneously to find  $v_n(p_T)$  curve with best-fit  $v_n(p_T^t) \ge v_n(p_T^a)$  product.

27



A. Adare

- Fit supports factorization at low  $p_T^a$
- $\Rightarrow$  suggests flow correlations.
- Fit deviates from data in jet-dominated high  $\ensuremath{p_{T}}\xspace^a$  region
- $\Rightarrow$  global description less appropriate.

#### Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12  $p_T^t$  bins, 12  $p_T^a$  bins;  $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$  points.

Fit all simultaneously to find  $v_n(p_T)$  curve with best-fit  $v_n(p_T^t) \ge v_n(p_T^a)$  product.

27



A. Adare

- Fit supports factorization at low  $p_T^a$
- $\Rightarrow$  suggests flow correlations.
- Fit deviates from data in jet-dominated high  $p_T^a$  region
- $\Rightarrow$  global description less appropriate.

#### Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12  $p_T^t$  bins, 12  $p_T^a$  bins;  $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$  points.

Fit all simultaneously to find  $v_n(p_T)$  curve with best-fit  $v_n(p_T^t) \ge v_n(p_T^a)$  product.

27



A. Adare

- Fit supports factorization at low  $p_T^a$
- $\Rightarrow$  suggests flow correlations.
- Fit deviates from data in jet-dominated high  $\ensuremath{p_{T}}\xspace^a$  region
- $\Rightarrow$  global description less appropriate.

#### Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12  $p_T^t$  bins, 12  $p_T^a$  bins;  $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$  points.

Fit all simultaneously to find  $v_n(p_T)$  curve with best-fit  $v_n(p_T^t) \ge v_n(p_T^a)$  product.

27



A. Adare

- Fit supports factorization at low  $p_T^a$
- $\Rightarrow$  suggests flow correlations.
- Fit deviates from data in jet-dominated high  $\ensuremath{p_{T}}\xspace^a$  region
- $\Rightarrow$  global description less appropriate.

#### Improving on $V_{n\Delta} = v_n(p_T)^2$ with triggered correlations...

12  $p_T^t$  bins, 12  $p_T^a$  bins;  $p_T^t \ge p_T^a \Rightarrow 78 V_{n\Delta}$  points.

Fit all simultaneously to find  $v_n(p_T)$  curve with best-fit  $v_n(p_T^t) \ge v_n(p_T^a)$  product.

27



A. Adare

- Fit supports factorization at low  $p_T^a$
- $\Rightarrow$  suggests flow correlations.
- Fit deviates from data in jet-dominated high  $\ensuremath{p_{T}}\xspace^a$  region
- $\Rightarrow$  global description less appropriate.

### vn from global fits

### Global fit parameters are v<sub>n</sub>(p<sub>T</sub>)

#### Agree well with vn{2} measurements



Steeply falling particle  $p_T$  distribution  $\rightarrow$  fits dominated by low- $p_T$  particles

What if global fits were applied where nonflow (jets) dominate?

#### ALICE Phys Lett B 708 (2012) 249

#### "Global" fit only where both particles have $p_T > 5$ GeV

#### An approximate factorization is obtained, but of a very different nature...



#### ALICE Phys Lett B 708 (2012) 249

#### "Global" fit only where both particles have $p_T > 5$ GeV

An approximate factorization is obtained, but of a very different nature...



### "Global" fit only where both particles have pT > 5 GeV

An approximate factorization is obtained, but of a very different nature...



A. Adare

### "Global" fit only where both particles have p<sub>T</sub> > 5 GeV

An approximate factorization is obtained, but of a very different nature...



A. Adare

### "Global" fit only where both particles have p<sub>T</sub> > 5 GeV

An approximate factorization is obtained, but of a very different nature...



Monday, April 2, 2012

### **Testing hydro & initial state pictures**

#### LHC $v_2$ , $v_3$ data adds strong constraints to I.C. + $\eta$ /s combination



A. Adare

30

### **Future directions**

Can we probe hydrodynamic flow at the partonic level? What is the nature of the initial state? What are the state properties of the QGP (sound speed, η/s, ...) How does hadronization occur?

#### **Experimental:**

- Joint-harmonic observables (e.g. PRC 84, 034910 (2011))
- PID at high  $p_T$  <--constituent quark scaling violation?
- Prompt photons (both thermal and hard QCD  $\gamma s)$
- Heavy flavor
- vn of fully reconstructed jets

#### **Theoretical: enormous recent progress.**

- Given the recent bounty of data, much catching up to do!
  - $v_n$  for higher harmonics (n > 3)
- models predicting suppression ( $R_{AA}$ ) and  $v_n$  simultaneously (especially for heavy quarks)
- Full evolution: initial state, hydro, freezeout/hadronization matching data

### Summary

Integrated elliptic flow is larger than at RHIC expected from larger radial flow Differential v<sub>2</sub> is roughly the same Do we understand this?

#### **Fluctuations are significant**

Higher harmonics in models constrain initial state and viscosity

#### **Viscous hydro continues to describe v**<sub>n</sub> data

- Data seem to favor low viscosity and Glauber I.C.s
- Need event-by-event modeling to capture fluctuation effects

#### $v_n$ at high $p_T$

Transition from flow to jet quenching Harmonic factorization  $\rightarrow$  understanding jet vs. flow in correlations

#### Many 2011 dataset analyses underway! Much action still to come. Thanks!!

A. Adare



### ALICE v2 at high pt



### ALICE v2, v3 with hydro

154

Z. Qiu et al. / Physics Letters B 707 (2012) 151–155



**Fig. 4.** Eccentricity-scaled, *p*<sub>*T*</sub>-differential elliptic and triangular flow for 2.76*A* TeV Pb–Pb collisions from viscous hydrodynamics with MC-KLN (a, b) and MC-Glauber (c, d) initial conditions. The ALICE data [25] are scaled according to their corresponding eccentricities, see text.

### **The Large Hadron Collider**

| Quantity                            | number                                            |
|-------------------------------------|---------------------------------------------------|
| Circumference                       | 26 659 m                                          |
| Dipole operating temperature        | 1.9 K (-271.3°C)                                  |
| Number of magnets                   | 9593                                              |
| Number of main dipoles              | 1232                                              |
| Number of main quadrupoles          | 392                                               |
| Number of RF cavities               | 8 per beam                                        |
| Nominal energy, protons             | 7 TeV                                             |
| Nominal energy, ions                | 2.76 TeV/u (*)                                    |
| Peak magnetic dipole field          | 8.33 T                                            |
| Min. distance between bunches       | ~7 m                                              |
| Design luminosity                   | 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> |
| No. of bunches per proton beam      | 2808                                              |
| No. of protons per bunch (at start) | 1.1 x 10 <sup>11</sup>                            |
| Number of turns per second          | 11 245                                            |
| Number of collisions per second     | 600 million                                       |
|                                     |                                                   |

(\*) Energy per nucleon





A. Adare

### v<sub>2</sub> @ LHC and predecessors

#### v<sub>2</sub> vs. collision energy for 20-30% most central collisions Hydro behavior follows extrapolated RHIC trend



# Identified Particle Spectra: Radial flewester from Klaus Reygers



Shapes of p<sub>T</sub> spectra for particles with different masses indicate radial flow

38

- Hydro models describe data
- Hydro inspired blast wave fits for central Pb+Pb at LHC:
  - $<\beta_{T,flow}> \approx 0.65 c$
  - $<\beta_{T,flow} >_{LHC} \approx 1.1 \times <\beta_{T,flow} >_{RHIC}$
  - kinetic freeze-out:  $T_{\rm fo} \approx 80 - 100 \, {\rm MeV}$

K. Reygers, Quarks and Gluons in Heavy-Ion Collisions 12

A. Adare

### CMS and ALICE v2



## Harmonics up to n = 15 3 4 50 1 2 3 4 40

#### **2-particle power spectra at a various momenta** Above n = 6, harmonics are vanishingly small



### ATLAS and CMS vn vs centrality

#### v<sub>n</sub> at various different p<sub>T</sub> ranges Same features as before:

- strong size/geometry dependence for  $v_2$ , much weaker for  $v_3$   $v_6$
- anisotropy peaks near 3-4 GeV/c
- higher harmonics are weaker





### The first harmonic

#### v1 has a rapidity-odd component

- From recoil of collision spectators
- Vanishes over symmetric η interval

### and a rapidity-even component

from

0.4

0.2

-0.2

-0.4

-0.6

-0.8

-1.2

v<sub>1</sub>{GF}

0

- fluctuation-induced directed flow,

I

I

6

8

Ad

p<sub>T</sub><sup>t</sup> (GeV/c)

 $\cap$ 

2

- global pT conservation (arXiv:0809.2949v2),
- jet fragmentation

Pb-Pb

0.15

0.1

0.05

2

2.76 TeV



p<sub>T</sub><sup>t</sup> (GeV/c)

0

### Fluctuations

#### **Fluctuations arise from**

event-by-event initialstate nonuniformities
at fixed b, mult (F.S. density anisotropies)

- b variations w/in cent bin

### **Bjoern schenke**



Phys. Rev. C 82, 064903 (2010)